Darknet-liikenteen analysointi koneoppimisalgoritmeilla

Tämä pro gradu -tutkielma käsittelee Darknet 2020 -nimisen datasetin testaamista random forest-, gradient boosting- ja logistic regression-algoritmeilla. Tutkimus toteutettiin konstruktiivisena tutkimuksena. Tutkimuksen aineisto koostuu New Brunswick yliopiston tutkijoiden Habibi Lashkarin, Kaurin j...

Full description

Bibliographic Details
Main Author: Arikainen, Anna
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/87053
_version_ 1828193038847967232
author Arikainen, Anna
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Arikainen, Anna Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Arikainen, Anna Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Arikainen, Anna
datasource_str_mv jyx
description Tämä pro gradu -tutkielma käsittelee Darknet 2020 -nimisen datasetin testaamista random forest-, gradient boosting- ja logistic regression-algoritmeilla. Tutkimus toteutettiin konstruktiivisena tutkimuksena. Tutkimuksen aineisto koostuu New Brunswick yliopiston tutkijoiden Habibi Lashkarin, Kaurin ja Rahalin tekemästä artikkelista DIDarknet: A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning sekä heidän tuottamastaan Darknet 2020 -datasetistä. Tutkimuksen tarkoituksena oli selvittää, miten koneoppimisen algoritmit selviytyvät datasetissä olevan darknet-tietoliikennettä imitoivan datan luokitellusta sekä verrata saatuja tuloksia tutkijoiden esittelemään syväoppimisen malliin nimeltä DIDarknet. Tutkimuksen lopputuloksena voidaan nähdä useamman eri koneoppimisalgoritmin tarkkudet luokitella datasetin tietoliikenne Label-ominaisuuden perusteella. Random forest -algoritmi suoriutui luokittelutehtävästä huomattavasti kahta muuta algoritmia paremmin. Tutkimuksen perusteella voidaan nähdä, että DIDarknet on suoriutunut darknet-liikenteen luokittelusta ylivoimaisesti paremmin kuin tutkielmassa esiintyvät ML-algoritmit. This master's thesis deals with testing the Darknet 2020 dataset with random forest, gradient boosting and logistic regression algorithms. The study was carried out as a constructive study. The material of the study consists of the article \emph{DIDarknet: A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning} by researchers Habibi Lashkari, Kaur and Rahali of the University of New Brunswick and the Darknet 2020 dataset produced by them. The purpose of the study was to find out how the machine learning algorithms cope with the classification of the data simulating darknet communication in the dataset, and to compare the obtained results with the deep learning model presented by the researchers called DIDarknet. The final result of the research is the accuracy of several different machine learning algorithms to classify data traffic based on the Label feature. The random forest algorithm performed the classification task significantly better than the other two algorithms. On the basis of the research, it can be concluded that DIDarknet has performed by far better than the ML algorithms appearing in the thesis in the classification of darknet traffic.
first_indexed 2024-09-11T08:51:07Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "H\u00e4m\u00e4l\u00e4inen, Timo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Arikainen, Anna", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-05-22T10:21:10Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-05-22T10:21:10Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/87053", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4 pro gradu -tutkielma k\u00e4sittelee Darknet 2020 -nimisen datasetin testaamista random forest-, gradient boosting- ja logistic regression-algoritmeilla. Tutkimus toteutettiin konstruktiivisena tutkimuksena. Tutkimuksen aineisto koostuu New Brunswick yliopiston tutkijoiden Habibi Lashkarin, Kaurin ja Rahalin tekem\u00e4st\u00e4 artikkelista DIDarknet: A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning sek\u00e4 heid\u00e4n tuottamastaan Darknet 2020 -datasetist\u00e4. Tutkimuksen tarkoituksena oli selvitt\u00e4\u00e4, miten koneoppimisen algoritmit selviytyv\u00e4t datasetiss\u00e4 olevan darknet-tietoliikennett\u00e4 imitoivan datan luokitellusta sek\u00e4 verrata saatuja tuloksia tutkijoiden esittelem\u00e4\u00e4n syv\u00e4oppimisen malliin nimelt\u00e4 DIDarknet.\n\nTutkimuksen lopputuloksena voidaan n\u00e4hd\u00e4 useamman eri koneoppimisalgoritmin tarkkudet luokitella datasetin tietoliikenne Label-ominaisuuden perusteella. Random forest -algoritmi suoriutui luokitteluteht\u00e4v\u00e4st\u00e4 huomattavasti kahta muuta algoritmia paremmin. Tutkimuksen perusteella voidaan n\u00e4hd\u00e4, ett\u00e4 DIDarknet on suoriutunut darknet-liikenteen luokittelusta ylivoimaisesti paremmin kuin tutkielmassa esiintyv\u00e4t ML-algoritmit.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This master's thesis deals with testing the Darknet 2020 dataset with random forest, gradient boosting and logistic regression algorithms. The study was carried out as a constructive study. The material of the study consists of the article \\emph{DIDarknet: A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning} by researchers Habibi Lashkari, Kaur and Rahali of the University of New Brunswick and the Darknet 2020 dataset produced by them. The purpose of the study was to find out how the machine learning algorithms cope with the classification of the data simulating darknet communication in the dataset, and to compare the obtained results with the deep learning model presented by the researchers called DIDarknet.\n\nThe final result of the research is the accuracy of several different machine learning algorithms to classify data traffic based on the Label feature. The random forest algorithm performed the classification task significantly better than the other two algorithms. On the basis of the research, it can be concluded that DIDarknet has performed by far better than the ML algorithms appearing in the thesis in the classification of darknet traffic.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-05-22T10:21:10Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-05-22T10:21:10Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "66", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "darknet", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "random forest", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "gradient boosting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "logistic regression", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "konvoluutioneuroverkko", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Darknet-liikenteen analysointi koneoppimisalgoritmeilla", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202305223126", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "anonyymiverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "syv\u00e4oppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_87053
language fin
last_indexed 2025-03-31T20:03:14Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/679d912b-7276-449c-a55c-09d23a4f761d\/download","text":"URN:NBN:fi:jyu-202305223126.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Arikainen, Anna Darknet-liikenteen analysointi koneoppimisalgoritmeilla darknet random forest gradient boosting logistic regression konvoluutioneuroverkko Tietotekniikka Mathematical Information Technology 602 anonyymiverkot algoritmit koneoppiminen neuroverkot syväoppiminen
title Darknet-liikenteen analysointi koneoppimisalgoritmeilla
title_full Darknet-liikenteen analysointi koneoppimisalgoritmeilla
title_fullStr Darknet-liikenteen analysointi koneoppimisalgoritmeilla Darknet-liikenteen analysointi koneoppimisalgoritmeilla
title_full_unstemmed Darknet-liikenteen analysointi koneoppimisalgoritmeilla Darknet-liikenteen analysointi koneoppimisalgoritmeilla
title_short Darknet-liikenteen analysointi koneoppimisalgoritmeilla
title_sort darknet liikenteen analysointi koneoppimisalgoritmeilla
title_txtP Darknet-liikenteen analysointi koneoppimisalgoritmeilla
topic darknet random forest gradient boosting logistic regression konvoluutioneuroverkko Tietotekniikka Mathematical Information Technology 602 anonyymiverkot algoritmit koneoppiminen neuroverkot syväoppiminen
topic_facet 602 Mathematical Information Technology Tietotekniikka algoritmit anonyymiverkot darknet gradient boosting koneoppiminen konvoluutioneuroverkko logistic regression neuroverkot random forest syväoppiminen
url https://jyx.jyu.fi/handle/123456789/87053 http://www.urn.fi/URN:NBN:fi:jyu-202305223126
work_keys_str_mv AT arikainenanna darknetliikenteenanalysointikoneoppimisalgoritmeilla