Reverse tip sample scanning probe microscopy

Elektroniikan komponenttien laskentateho kasvaa jatkuvasti samalla kun niiden koko pienenee. Kaikista kehittyneimpien transistorien koko on nykypäivänä jo alle kymmenen nanometrin. Näiden transistorien rakenne on rajoittunut kolmeen ulottuvuuteen, jonka takia kaksiulotteisia karakterisointimenetelmi...

Full description

Bibliographic Details
Main Author: Kanniainen, Antti
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/70952
_version_ 1828193073788616704
author Kanniainen, Antti
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Kanniainen, Antti Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Kanniainen, Antti Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Kanniainen, Antti
datasource_str_mv jyx
description Elektroniikan komponenttien laskentateho kasvaa jatkuvasti samalla kun niiden koko pienenee. Kaikista kehittyneimpien transistorien koko on nykypäivänä jo alle kymmenen nanometrin. Näiden transistorien rakenne on rajoittunut kolmeen ulottuvuuteen, jonka takia kaksiulotteisia karakterisointimenetelmiä ei voida käyttää enää. Tämän takia olemassa olevat menetelmät on muokattu sopimaan kolmiulotteisiin mittauksiin. Varauksen kuljettajien konsentraation mittaamiseen käytetyssä SSRM -menetelmän tapauksessa tämä johti nanotomografiamenetelmään, jota yleisesti kutsutaan skalpelli SSRM:ksi. Skalpellimenetelmä hyödyntää SSRM-mittauksissa käytettävää timanttikärkeä, jolla vuorotellen poistetaan materiaalia ja tehdään sähköisiä mittauksia keräten informaatiota kolmessa ulottuvuudessa. Koska materiaalin poistaminen timanttikärjellä vaatii runsaasti voimaa, kärki kärsii tylsymisestä. Lisäksi poistettu materiaali kontaminoi kärjen. Tämä kärjen ominaisuuksien nopea huononeminen laskee sähköisen mittauksen erotuskykyä, koska samaa timanttikärkeä käytetään kummassakin vaiheessa. Kärjen huonontumisongelman ratkaisemiseksi tässä työssä esitellään uusi lähestymistapa, jota kutsutaan käänteiseksi kärkinäytepyyhkäisyanturimikroskopiaksi (RTS SPM). Tämä työ sisältää kaksi osaa: RTS SPM -prototyyppianturien kehittämisen menetelmän toimivuuden todentamiseen sekä kärkianturien arvioinnin ja vertailun. Ensimmäinen osa sisältää erilaisten kärkirakennekonseptien suunnittelun ja valmistuksen kokonaisten piikiekkojen mittakaavassa. Toisessa osassa tehtiin SSRM- ja hipaisumoodi-mittauksia, joilla arvioitiin kärkiantureita. Skalpelli SSRM -mittaukset suoritettiin käänteisellä kärkinäytelähestymistavalla, jotta menetelmän suorityskykyä pystyttiin arvioimaan. Lisäksi skalpellimittauksen menettelytapaa parannettiin automatisoidulla leikkaa-ja-katso -toteutuksella. Pystysuorilla hiilinanoputkinäytteillä tehdyt SSRM-mittaukset varmensivat, että RTS-lähestymistavan erottelukyky on sama kuin tavanomaisen lähestymistavan. Näissä mitattiin oksidin ja hiilinanoputken välisen siirtymäalueen leveyttä. Koska tavanomaista SSRM:ää käytetään rutiininomaisesti analysoimaan alle kymmenen nanometrin kokoisia komponenttien yksityiskohtia, RTS-lähestymistapa yltää korkeaan kolmiulotteiseen erotuskykyyn ja on sopiva karakterisoimaan kaikista kehittyneimpiä puolijohdekomponentteja. Lisäksi hipaisumoodimittaukset näyttivät kuinka laaja valikoima erilaisia SPM moodeja on saatavilla RTS-lähestymistavalle. Tavanomaisissa skalpellimittauksissa kärjen suorituskyvyn heikentymisestä johtuva erotuskyvyn huononeminen oli silmiinpistävää. Tätä samaa erotuskyvyn huononemista ei havaittu RTS-skalpellimittauksissa. Lisäksi RTS-skalpellimittausten automatisointi osoitti, kuinka RTS-lähestymistapaa on mahdollista rutiininomaisesti käyttää karakterisointiin. Nowadays, the processing power of electronic devices is constantly rising while the device size keeps getting smaller and smaller. The downscaling of most advanced transistors features, such as gate length, reaches sub-10~nm today. These transistor structures are spatially confined in three-dimensions and therefore classical characterisation approaches based on two-dimensional measurements, such as scanning spreading resistance microscopy (SSRM), cannot be applied anymore. Therefore, the existing methods have been modified for three-dimensional measurements. In the case of SSRM this led to a nanotomography method commonly referred to as scalpel SSRM. The scalpel method utilises the diamond tip used for SSRM measurements to alternate between performing the tip-induced material removal and the electrical measurement to gather information in three dimensions. However, since the force required for tip-induced material removal is very high, the diamond tip suffers from rapid blunting. Furthermore, the removed material contaminates the tip. This rapid tip degradation reduces the resolution of the electrical measurement, because the same tip is used for both steps. Therefore, in this thesis work a novel approach called reverse tip sample (RTS) scanning probe microscopy (SPM) is presented to resolve the tip degradation problem. This thesis work contains two parts: The first part deals with the development of RTS SPM prototype sensors for proof-of-concept measurements, and the second part with tip sensor evaluation and benchmarking. First part includes the design and fabrication of various tip structure concepts on wafer scale. In the second part SSRM and tapping mode measurements were conducted to evaluate tip sensors and scalpel SSRM was performed with the RTS approach to benchmark the method. In addition, the scalpel measurement procedure was improved towards an automated slice-and-view implementation. SSRM measurements carried out on a vertical carbon nanotube (CNT) sample verified that the resolution of the RTS approach is comparable to the one of the conventional approach, by studying the transition zone width between the oxide and the CNT. Moreover, tapping mode measurements demonstrated the wide variety of SPM modes available for the RTS approach. RTS scalpel measurements did indicate a slower degradation in resolution. This was deduced by comparing the results to the conventional scalpel measurements, where tip degradation was conspicuous. Furthermore, the automation of the RTS scalpel measurements demonstrated a high potential for the RTS approach to be executed routinely in an automated manner.
first_indexed 2020-06-29T20:00:34Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "Hantschel, Thomas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Sajavaara, Timo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kanniainen, Antti", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-06-29T06:11:09Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-06-29T06:11:09Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/70952", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Elektroniikan komponenttien laskentateho kasvaa jatkuvasti samalla kun niiden koko pienenee. Kaikista kehittyneimpien transistorien koko on nykyp\u00e4iv\u00e4n\u00e4 jo alle kymmenen nanometrin. N\u00e4iden transistorien rakenne on rajoittunut kolmeen ulottuvuuteen, jonka takia kaksiulotteisia karakterisointimenetelmi\u00e4 ei voida k\u00e4ytt\u00e4\u00e4 en\u00e4\u00e4. T\u00e4m\u00e4n takia olemassa olevat menetelm\u00e4t on muokattu sopimaan kolmiulotteisiin mittauksiin. Varauksen kuljettajien konsentraation mittaamiseen k\u00e4ytetyss\u00e4 SSRM -menetelm\u00e4n tapauksessa t\u00e4m\u00e4 johti nanotomografiamenetelm\u00e4\u00e4n, jota yleisesti kutsutaan skalpelli SSRM:ksi. Skalpellimenetelm\u00e4 hy\u00f6dynt\u00e4\u00e4 SSRM-mittauksissa k\u00e4ytett\u00e4v\u00e4\u00e4 timanttik\u00e4rke\u00e4, jolla vuorotellen poistetaan materiaalia ja tehd\u00e4\u00e4n s\u00e4hk\u00f6isi\u00e4 mittauksia ker\u00e4ten informaatiota kolmessa ulottuvuudessa. Koska materiaalin poistaminen timanttik\u00e4rjell\u00e4 vaatii runsaasti voimaa, k\u00e4rki k\u00e4rsii tylsymisest\u00e4. Lis\u00e4ksi poistettu materiaali kontaminoi k\u00e4rjen. T\u00e4m\u00e4 k\u00e4rjen ominaisuuksien nopea huononeminen laskee s\u00e4hk\u00f6isen mittauksen erotuskyky\u00e4, koska samaa timanttik\u00e4rke\u00e4 k\u00e4ytet\u00e4\u00e4n kummassakin vaiheessa. K\u00e4rjen huonontumisongelman ratkaisemiseksi t\u00e4ss\u00e4 ty\u00f6ss\u00e4 esitell\u00e4\u00e4n uusi l\u00e4hestymistapa, jota kutsutaan k\u00e4\u00e4nteiseksi k\u00e4rkin\u00e4ytepyyhk\u00e4isyanturimikroskopiaksi (RTS SPM).\n\nT\u00e4m\u00e4 ty\u00f6 sis\u00e4lt\u00e4\u00e4 kaksi osaa: RTS SPM -prototyyppianturien kehitt\u00e4misen menetelm\u00e4n toimivuuden todentamiseen sek\u00e4 k\u00e4rkianturien arvioinnin ja vertailun. Ensimm\u00e4inen osa sis\u00e4lt\u00e4\u00e4 erilaisten k\u00e4rkirakennekonseptien suunnittelun ja valmistuksen kokonaisten piikiekkojen mittakaavassa. Toisessa osassa tehtiin SSRM- ja hipaisumoodi-mittauksia, joilla arvioitiin k\u00e4rkiantureita. Skalpelli SSRM -mittaukset suoritettiin k\u00e4\u00e4nteisell\u00e4 k\u00e4rkin\u00e4ytel\u00e4hestymistavalla, jotta menetelm\u00e4n suorityskyky\u00e4 pystyttiin arvioimaan. Lis\u00e4ksi skalpellimittauksen menettelytapaa parannettiin automatisoidulla leikkaa-ja-katso -toteutuksella.\n\nPystysuorilla hiilinanoputkin\u00e4ytteill\u00e4 tehdyt SSRM-mittaukset varmensivat, ett\u00e4 RTS-l\u00e4hestymistavan erottelukyky on sama kuin tavanomaisen l\u00e4hestymistavan. N\u00e4iss\u00e4 mitattiin oksidin ja hiilinanoputken v\u00e4lisen siirtym\u00e4alueen leveytt\u00e4. Koska tavanomaista SSRM:\u00e4\u00e4 k\u00e4ytet\u00e4\u00e4n rutiininomaisesti analysoimaan alle kymmenen nanometrin kokoisia komponenttien yksityiskohtia, RTS-l\u00e4hestymistapa ylt\u00e4\u00e4 korkeaan kolmiulotteiseen erotuskykyyn ja on sopiva karakterisoimaan kaikista kehittyneimpi\u00e4 puolijohdekomponentteja. Lis\u00e4ksi hipaisumoodimittaukset n\u00e4yttiv\u00e4t kuinka laaja valikoima erilaisia SPM moodeja on saatavilla RTS-l\u00e4hestymistavalle. Tavanomaisissa skalpellimittauksissa k\u00e4rjen suorituskyvyn heikentymisest\u00e4 johtuva erotuskyvyn huononeminen oli silmiinpist\u00e4v\u00e4\u00e4. T\u00e4t\u00e4 samaa erotuskyvyn huononemista ei havaittu RTS-skalpellimittauksissa. Lis\u00e4ksi RTS-skalpellimittausten automatisointi osoitti, kuinka RTS-l\u00e4hestymistapaa on mahdollista rutiininomaisesti k\u00e4ytt\u00e4\u00e4 karakterisointiin.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Nowadays, the processing power of electronic devices is constantly rising while the device size keeps getting smaller and smaller. The downscaling of most advanced transistors features, such as gate length, reaches sub-10~nm today. These transistor structures are spatially confined in three-dimensions and therefore classical characterisation approaches based on two-dimensional measurements, such as scanning spreading resistance microscopy (SSRM), cannot be applied anymore. Therefore, the existing methods have been modified for three-dimensional measurements. In the case of SSRM this led to a nanotomography method commonly referred to as scalpel SSRM. The scalpel method utilises the diamond tip used for SSRM measurements to alternate between performing the tip-induced material removal and the electrical measurement to gather information in three dimensions. However, since the force required for tip-induced material removal is very high, the diamond tip suffers from rapid blunting. Furthermore, the removed material contaminates the tip. This rapid tip degradation reduces the resolution of the electrical measurement, because the same tip is used for both steps. Therefore, in this thesis work a novel approach called reverse tip sample (RTS) scanning probe microscopy (SPM) is presented to resolve the tip degradation problem.\n\nThis thesis work contains two parts: The first part deals with the development of RTS SPM prototype sensors for proof-of-concept measurements, and the second part with tip sensor evaluation and benchmarking. First part includes the design and fabrication of various tip structure concepts on wafer scale. In the second part SSRM and tapping mode measurements were conducted to evaluate tip sensors and scalpel SSRM was performed with the RTS approach to benchmark the method. In addition, the scalpel measurement procedure was improved towards an automated slice-and-view implementation.\n\nSSRM measurements carried out on a vertical carbon nanotube (CNT) sample verified that the resolution of the RTS approach is comparable to the one of the conventional approach, by studying the transition zone width between the oxide and the CNT. Moreover, tapping mode measurements demonstrated the wide variety of SPM modes available for the RTS approach. RTS scalpel measurements did indicate a slower degradation in resolution. This was deduced by comparing the results to the conventional scalpel measurements, where tip degradation was conspicuous. Furthermore, the automation of the RTS scalpel measurements demonstrated a high potential for the RTS approach to be executed routinely in an automated manner.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-06-29T06:11:09Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-06-29T06:11:09Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "67", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "SPM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "scalpel SPM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "SSRM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "nanotomography", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "carbon nanotubes", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Reverse tip sample scanning probe microscopy", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202006295138", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "university", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mikroskopia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sondit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "skannaus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "microscopy", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "probes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "scanning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/en/workspaces/facilities).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_70952
language eng
last_indexed 2025-03-31T20:02:37Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Kanniainen, Antti Reverse tip sample scanning probe microscopy SPM scalpel SPM SSRM nanotomography carbon nanotubes Fysiikka Physics 4021 mikroskopia sondit skannaus fysiikka microscopy probes scanning physics
title Reverse tip sample scanning probe microscopy
title_full Reverse tip sample scanning probe microscopy
title_fullStr Reverse tip sample scanning probe microscopy Reverse tip sample scanning probe microscopy
title_full_unstemmed Reverse tip sample scanning probe microscopy Reverse tip sample scanning probe microscopy
title_short Reverse tip sample scanning probe microscopy
title_sort reverse tip sample scanning probe microscopy
title_txtP Reverse tip sample scanning probe microscopy
topic SPM scalpel SPM SSRM nanotomography carbon nanotubes Fysiikka Physics 4021 mikroskopia sondit skannaus fysiikka microscopy probes scanning physics
topic_facet 4021 Fysiikka Physics SPM SSRM carbon nanotubes fysiikka microscopy mikroskopia nanotomography physics probes scalpel SPM scanning skannaus sondit
url https://jyx.jyu.fi/handle/123456789/70952 http://www.urn.fi/URN:NBN:fi:jyu-202006295138
work_keys_str_mv AT kanniainenantti reversetipsamplescanningprobemicroscopy