fullrecord |
[{"key": "dc.contributor.advisor", "value": "Hantschel, Thomas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Sajavaara, Timo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kanniainen, Antti", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-06-29T06:11:09Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-06-29T06:11:09Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/70952", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Elektroniikan komponenttien laskentateho kasvaa jatkuvasti samalla kun niiden koko pienenee. Kaikista kehittyneimpien transistorien koko on nykyp\u00e4iv\u00e4n\u00e4 jo alle kymmenen nanometrin. N\u00e4iden transistorien rakenne on rajoittunut kolmeen ulottuvuuteen, jonka takia kaksiulotteisia karakterisointimenetelmi\u00e4 ei voida k\u00e4ytt\u00e4\u00e4 en\u00e4\u00e4. T\u00e4m\u00e4n takia olemassa olevat menetelm\u00e4t on muokattu sopimaan kolmiulotteisiin mittauksiin. Varauksen kuljettajien konsentraation mittaamiseen k\u00e4ytetyss\u00e4 SSRM -menetelm\u00e4n tapauksessa t\u00e4m\u00e4 johti nanotomografiamenetelm\u00e4\u00e4n, jota yleisesti kutsutaan skalpelli SSRM:ksi. Skalpellimenetelm\u00e4 hy\u00f6dynt\u00e4\u00e4 SSRM-mittauksissa k\u00e4ytett\u00e4v\u00e4\u00e4 timanttik\u00e4rke\u00e4, jolla vuorotellen poistetaan materiaalia ja tehd\u00e4\u00e4n s\u00e4hk\u00f6isi\u00e4 mittauksia ker\u00e4ten informaatiota kolmessa ulottuvuudessa. Koska materiaalin poistaminen timanttik\u00e4rjell\u00e4 vaatii runsaasti voimaa, k\u00e4rki k\u00e4rsii tylsymisest\u00e4. Lis\u00e4ksi poistettu materiaali kontaminoi k\u00e4rjen. T\u00e4m\u00e4 k\u00e4rjen ominaisuuksien nopea huononeminen laskee s\u00e4hk\u00f6isen mittauksen erotuskyky\u00e4, koska samaa timanttik\u00e4rke\u00e4 k\u00e4ytet\u00e4\u00e4n kummassakin vaiheessa. K\u00e4rjen huonontumisongelman ratkaisemiseksi t\u00e4ss\u00e4 ty\u00f6ss\u00e4 esitell\u00e4\u00e4n uusi l\u00e4hestymistapa, jota kutsutaan k\u00e4\u00e4nteiseksi k\u00e4rkin\u00e4ytepyyhk\u00e4isyanturimikroskopiaksi (RTS SPM).\n\nT\u00e4m\u00e4 ty\u00f6 sis\u00e4lt\u00e4\u00e4 kaksi osaa: RTS SPM -prototyyppianturien kehitt\u00e4misen menetelm\u00e4n toimivuuden todentamiseen sek\u00e4 k\u00e4rkianturien arvioinnin ja vertailun. Ensimm\u00e4inen osa sis\u00e4lt\u00e4\u00e4 erilaisten k\u00e4rkirakennekonseptien suunnittelun ja valmistuksen kokonaisten piikiekkojen mittakaavassa. Toisessa osassa tehtiin SSRM- ja hipaisumoodi-mittauksia, joilla arvioitiin k\u00e4rkiantureita. Skalpelli SSRM -mittaukset suoritettiin k\u00e4\u00e4nteisell\u00e4 k\u00e4rkin\u00e4ytel\u00e4hestymistavalla, jotta menetelm\u00e4n suorityskyky\u00e4 pystyttiin arvioimaan. Lis\u00e4ksi skalpellimittauksen menettelytapaa parannettiin automatisoidulla leikkaa-ja-katso -toteutuksella.\n\nPystysuorilla hiilinanoputkin\u00e4ytteill\u00e4 tehdyt SSRM-mittaukset varmensivat, ett\u00e4 RTS-l\u00e4hestymistavan erottelukyky on sama kuin tavanomaisen l\u00e4hestymistavan. N\u00e4iss\u00e4 mitattiin oksidin ja hiilinanoputken v\u00e4lisen siirtym\u00e4alueen leveytt\u00e4. Koska tavanomaista SSRM:\u00e4\u00e4 k\u00e4ytet\u00e4\u00e4n rutiininomaisesti analysoimaan alle kymmenen nanometrin kokoisia komponenttien yksityiskohtia, RTS-l\u00e4hestymistapa ylt\u00e4\u00e4 korkeaan kolmiulotteiseen erotuskykyyn ja on sopiva karakterisoimaan kaikista kehittyneimpi\u00e4 puolijohdekomponentteja. Lis\u00e4ksi hipaisumoodimittaukset n\u00e4yttiv\u00e4t kuinka laaja valikoima erilaisia SPM moodeja on saatavilla RTS-l\u00e4hestymistavalle. Tavanomaisissa skalpellimittauksissa k\u00e4rjen suorituskyvyn heikentymisest\u00e4 johtuva erotuskyvyn huononeminen oli silmiinpist\u00e4v\u00e4\u00e4. T\u00e4t\u00e4 samaa erotuskyvyn huononemista ei havaittu RTS-skalpellimittauksissa. Lis\u00e4ksi RTS-skalpellimittausten automatisointi osoitti, kuinka RTS-l\u00e4hestymistapaa on mahdollista rutiininomaisesti k\u00e4ytt\u00e4\u00e4 karakterisointiin.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Nowadays, the processing power of electronic devices is constantly rising while the device size keeps getting smaller and smaller. The downscaling of most advanced transistors features, such as gate length, reaches sub-10~nm today. These transistor structures are spatially confined in three-dimensions and therefore classical characterisation approaches based on two-dimensional measurements, such as scanning spreading resistance microscopy (SSRM), cannot be applied anymore. Therefore, the existing methods have been modified for three-dimensional measurements. In the case of SSRM this led to a nanotomography method commonly referred to as scalpel SSRM. The scalpel method utilises the diamond tip used for SSRM measurements to alternate between performing the tip-induced material removal and the electrical measurement to gather information in three dimensions. However, since the force required for tip-induced material removal is very high, the diamond tip suffers from rapid blunting. Furthermore, the removed material contaminates the tip. This rapid tip degradation reduces the resolution of the electrical measurement, because the same tip is used for both steps. Therefore, in this thesis work a novel approach called reverse tip sample (RTS) scanning probe microscopy (SPM) is presented to resolve the tip degradation problem.\n\nThis thesis work contains two parts: The first part deals with the development of RTS SPM prototype sensors for proof-of-concept measurements, and the second part with tip sensor evaluation and benchmarking. First part includes the design and fabrication of various tip structure concepts on wafer scale. In the second part SSRM and tapping mode measurements were conducted to evaluate tip sensors and scalpel SSRM was performed with the RTS approach to benchmark the method. In addition, the scalpel measurement procedure was improved towards an automated slice-and-view implementation.\n\nSSRM measurements carried out on a vertical carbon nanotube (CNT) sample verified that the resolution of the RTS approach is comparable to the one of the conventional approach, by studying the transition zone width between the oxide and the CNT. Moreover, tapping mode measurements demonstrated the wide variety of SPM modes available for the RTS approach. RTS scalpel measurements did indicate a slower degradation in resolution. This was deduced by comparing the results to the conventional scalpel measurements, where tip degradation was conspicuous. Furthermore, the automation of the RTS scalpel measurements demonstrated a high potential for the RTS approach to be executed routinely in an automated manner.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-06-29T06:11:09Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-06-29T06:11:09Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "67", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "SPM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "scalpel SPM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "SSRM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "nanotomography", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "carbon nanotubes", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Reverse tip sample scanning probe microscopy", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202006295138", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "university", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mikroskopia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sondit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "skannaus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "microscopy", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "probes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "scanning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/en/workspaces/facilities).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|