A multilevel Monte Carlo algorithm for SDEs with jumps

The multilevel Monte Carlo algorithm is an extension of the traditional Monte Carlo algorithm. It is a numerical method, which allows us to approximate the expected value of a random variable X. We use some appropriate discretization method to obtain approximations X_1, X_2, ... ,X_L of X such that...

Full description

Bibliographic Details
Main Author: Rantala, Johanna
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/63681
_version_ 1828193080497405952
author Rantala, Johanna
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Rantala, Johanna Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Rantala, Johanna Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Rantala, Johanna
datasource_str_mv jyx
description The multilevel Monte Carlo algorithm is an extension of the traditional Monte Carlo algorithm. It is a numerical method, which allows us to approximate the expected value of a random variable X. We use some appropriate discretization method to obtain approximations X_1, X_2, ... ,X_L of X such that each approximation is made with a finer grid. The more accuracy we want from our approximation, the more the computational cost grows. The multilevel method exploits evaluation at multiple levels of refining discretizations allowing us to achieve a better accuracy with lower cost. In this thesis we use the Euler scheme to approximate the solution of the stochastic differential equation, and then we use the multilevel Monte Carlo algorithm to estimate the expected value of the solution. We prove that the mean squared error of the estimator is O(h^2) with computational complexity O(h^(-2)(log h)^2) with stochastic differential equations driven by a Brownian motion. Lastly, we prove that with computational complexity O(n), when the driving process is a Lévy process without Brownian component the error is O(n^(-1/2)) and with the Brownian component O(n^(-1/2) (log n)^(3/2)). As a background theory we introduce the basic concepts of probability and of stochastic processes, namely the Brownian motion, the Poisson processes and Lévy processes. We formulate the famous Lévy-Itô decomposition, which allows us to represent a Lévy process as the combination of a jump process and a Brownian motion. Additionally, we consider stochastic integration with respect to the Brownian motion, a martingale and the Poisson random measure. We use these to formulate the stochastic differential equations in two cases, driven by a Brownian motion or by a Lévy process.
first_indexed 2019-09-20T09:13:56Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Geiss, Stefan", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Geiss, Christel", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Rantala, Johanna", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-05-02T06:02:39Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-05-02T06:02:39Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/63681", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The multilevel Monte Carlo algorithm is an extension of the traditional Monte Carlo algorithm. It is a numerical method, which allows us to approximate the expected value of a random variable X. We use some appropriate discretization method to obtain approximations X_1, X_2, ... ,X_L of X such that each approximation is made with a finer grid. The more accuracy we want from our approximation, the more the computational cost grows. The multilevel method exploits evaluation at multiple levels of refining discretizations allowing us to achieve a better accuracy with lower cost.\n\nIn this thesis we use the Euler scheme to approximate the solution of the stochastic differential equation, and then we use the multilevel Monte Carlo algorithm to estimate the expected value of the solution. We prove that the mean squared error of the estimator is O(h^2) with computational complexity O(h^(-2)(log h)^2) with stochastic differential equations driven by a Brownian motion. Lastly, we prove that with computational complexity O(n), when the driving process is a L\u00e9vy process without Brownian component the error is O(n^(-1/2)) and with the Brownian component O(n^(-1/2) (log n)^(3/2)).\n\nAs a background theory we introduce the basic concepts of probability and of stochastic processes, namely the Brownian motion, the Poisson processes and L\u00e9vy processes. We formulate the famous L\u00e9vy-It\u00f4 decomposition, which allows us to represent a L\u00e9vy process as the combination of a jump process and a Brownian motion. Additionally, we consider stochastic integration with respect to the Brownian motion, a martingale and the Poisson random measure. We use these to formulate the stochastic differential equations in two cases, driven by a Brownian motion or by a L\u00e9vy process.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2019-05-02T06:02:39Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-05-02T06:02:39Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "53", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "A multilevel Monte Carlo algorithm for SDEs with jumps", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201905022355", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Stokastiikka ja todenn\u00e4k\u00f6isyysteoria", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Stochastics and Probability", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "differentiaaliyht\u00e4l\u00f6t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stokastiset prosessit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "differential equations", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stochastic processes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algorithms", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_63681
language eng
last_indexed 2025-03-31T20:01:55Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/f29487f2-b385-4069-aa01-312bfc92db22\/download","text":"URN:NBN:fi:jyu-201905022355.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Rantala, Johanna A multilevel Monte Carlo algorithm for SDEs with jumps Stokastiikka ja todennäköisyysteoria Stochastics and Probability 4041 differentiaaliyhtälöt stokastiset prosessit algoritmit differential equations stochastic processes algorithms
title A multilevel Monte Carlo algorithm for SDEs with jumps
title_full A multilevel Monte Carlo algorithm for SDEs with jumps
title_fullStr A multilevel Monte Carlo algorithm for SDEs with jumps A multilevel Monte Carlo algorithm for SDEs with jumps
title_full_unstemmed A multilevel Monte Carlo algorithm for SDEs with jumps A multilevel Monte Carlo algorithm for SDEs with jumps
title_short A multilevel Monte Carlo algorithm for SDEs with jumps
title_sort multilevel monte carlo algorithm for sdes with jumps
title_txtP A multilevel Monte Carlo algorithm for SDEs with jumps
topic Stokastiikka ja todennäköisyysteoria Stochastics and Probability 4041 differentiaaliyhtälöt stokastiset prosessit algoritmit differential equations stochastic processes algorithms
topic_facet 4041 Stochastics and Probability Stokastiikka ja todennäköisyysteoria algorithms algoritmit differentiaaliyhtälöt differential equations stochastic processes stokastiset prosessit
url https://jyx.jyu.fi/handle/123456789/63681 http://www.urn.fi/URN:NBN:fi:jyu-201905022355
work_keys_str_mv AT rantalajohanna amultilevelmontecarloalgorithmforsdeswithjumps AT rantalajohanna multilevelmontecarloalgorithmforsdeswithjumps