Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa

Tässä kandidaatintutkielmassa tarkastellaan tekoälyn käyttöä terveydenhuollon diagnostiikassa, sekä siihen liittyviä mahdollisuuksia ja haasteita. Tutkimuksen tarkoituksena oli selvittää, miten tekoäly voidaan hyödyntää terveydenhuollon diagnostiikan eri osa-alueilla, sekä millaisia ongelmia siihen...

Full description

Bibliographic Details
Main Author: Lehtinen, Veeti
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/99210
_version_ 1826225797201920000
author Lehtinen, Veeti
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Lehtinen, Veeti Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Lehtinen, Veeti Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Lehtinen, Veeti
datasource_str_mv jyx
description Tässä kandidaatintutkielmassa tarkastellaan tekoälyn käyttöä terveydenhuollon diagnostiikassa, sekä siihen liittyviä mahdollisuuksia ja haasteita. Tutkimuksen tarkoituksena oli selvittää, miten tekoäly voidaan hyödyntää terveydenhuollon diagnostiikan eri osa-alueilla, sekä millaisia ongelmia siihen liittyy. Tutkimus toteutettiin kirjallisuuskatsauksena, jossa pyrittiin hyödyntämään tuoreita ja vertaisarvioituja tieteellisiä artikkeleita. Tutkielmassa havaittiin, että tekoälyllä on potentiaalia parantaa diagnostiikan tarkkuutta erityisesti lääketieteellisessä kuvantamisessa ja potilasdatan analysoinnissa. Syväoppimismallit, kuten konvoluutioneuroverkot osoittautuivat hyödyllisiksi patologisten muutosten havaitsemisessa ja tekoäly voi analysoida suuria tietomääriä nopeammin ja tarkemmin, kuin muut perinteiset menetelmät. Tekoälyn käyttöön liittyy kuitenkin haasteita, kuten päätöksenteon läpinäkyvyyden puute. Myös tietosuojaan liittyvät ongelmat korostuivat tekoälyn käytössä terveydenhuollossa. Tutkimus osoittaa, että tekoäly on merkittävä väline terveydenhuollon diagnostiikassa ja sen kehittämisessä, mutta sen laajempi käyttöönotto vaati vielä suurimpien ongelmien ratkaisua, sekä säätelyä. This bachelor's thesis examines the use of artificial intelligence in healthcare diagnostics and the opportunities and challenges associated with it. The purpose of this research was to find out how AI can be used in different areas of health care diagnostics and what problems are associated with it. The study was carried out as a literature review using recent and peer reviewed scientific articles. The study found that AI has the potential to improve the accuracy of diagnostics, especially in medical imaging and patient data analysis. Deep learning models such as convolutional neural networks proved useful in detecting pathological changes and AI can analyse large amounts of data faster and more accurately than other traditional methods. There are some challenges in using AI, such as the lack of transparency in decision-making. Data protection and privacy issues were also highlighted in the use of AI in healthcare. The study shows that AI is an important tool for diagnostics and its development in healthcare, but its wider adoption still requires addressing major issues and regulation.
first_indexed 2024-12-30T21:00:37Z
format Kandityö
fullrecord [{"key": "dc.contributor.advisor", "value": "Clements, Kati", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Lehtinen, Veeti", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-12-30T07:27:10Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-12-30T07:27:10Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/99210", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 kandidaatintutkielmassa tarkastellaan teko\u00e4lyn k\u00e4ytt\u00f6\u00e4 terveydenhuollon diagnostiikassa, sek\u00e4 siihen liittyvi\u00e4 mahdollisuuksia ja haasteita. Tutkimuksen tarkoituksena oli selvitt\u00e4\u00e4, miten teko\u00e4ly voidaan hy\u00f6dynt\u00e4\u00e4 terveydenhuollon diagnostiikan eri osa-alueilla, sek\u00e4 millaisia ongelmia siihen liittyy. Tutkimus toteutettiin kirjallisuuskatsauksena, jossa pyrittiin hy\u00f6dynt\u00e4m\u00e4\u00e4n tuoreita ja vertaisarvioituja tieteellisi\u00e4 artikkeleita. Tutkielmassa havaittiin, ett\u00e4 teko\u00e4lyll\u00e4 on potentiaalia parantaa diagnostiikan tarkkuutta erityisesti l\u00e4\u00e4ketieteellisess\u00e4 kuvantamisessa ja potilasdatan analysoinnissa. Syv\u00e4oppimismallit, kuten konvoluutioneuroverkot osoittautuivat hy\u00f6dyllisiksi patologisten muutosten havaitsemisessa ja teko\u00e4ly voi analysoida suuria tietom\u00e4\u00e4ri\u00e4 nopeammin ja tarkemmin, kuin muut perinteiset menetelm\u00e4t. Teko\u00e4lyn k\u00e4ytt\u00f6\u00f6n liittyy kuitenkin haasteita, kuten p\u00e4\u00e4t\u00f6ksenteon l\u00e4pin\u00e4kyvyyden puute. My\u00f6s tietosuojaan liittyv\u00e4t ongelmat korostuivat teko\u00e4lyn k\u00e4yt\u00f6ss\u00e4 terveydenhuollossa. Tutkimus osoittaa, ett\u00e4 teko\u00e4ly on merkitt\u00e4v\u00e4 v\u00e4line terveydenhuollon diagnostiikassa ja sen kehitt\u00e4misess\u00e4, mutta sen laajempi k\u00e4ytt\u00f6\u00f6notto vaati viel\u00e4 suurimpien ongelmien ratkaisua, sek\u00e4 s\u00e4\u00e4tely\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This bachelor's thesis examines the use of artificial intelligence in healthcare diagnostics and the opportunities and challenges associated with it. The purpose of this research was to find out how AI can be used in different areas of health care diagnostics and what problems are associated with it. The study was carried out as a literature review using recent and peer reviewed scientific articles. The study found that AI has the potential to improve the accuracy of diagnostics, especially in medical imaging and patient data analysis. Deep learning models such as convolutional neural networks proved useful in detecting pathological changes and AI can analyse large amounts of data faster and more accurately than other traditional methods. There are some challenges in using AI, such as the lack of transparency in decision-making. Data protection and privacy issues were also highlighted in the use of AI in healthcare. The study shows that AI is an important tool for diagnostics and its development in healthcare, but its wider adoption still requires addressing major issues and regulation.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-12-30T07:27:10Z\r\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-12-30T07:27:10Z (GMT). No. of bitstreams: 0\r\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "23", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Teko\u00e4lyn hy\u00f6dynt\u00e4minen terveydenhuollon diagnostiikassa", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202412308015", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": null, "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "terveydenhuolto", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "diagnostiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "l\u00e4\u00e4ketiede", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/collections/archival-workstation).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_99210
language fin
last_indexed 2025-02-18T10:55:08Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Lehtinen, Veeti Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa Tietojärjestelmätiede Information Systems Science 601 tekoäly terveydenhuolto diagnostiikka koneoppiminen lääketiede
title Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_full Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_fullStr Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_full_unstemmed Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_short Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_sort tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
title_txtP Tekoälyn hyödyntäminen terveydenhuollon diagnostiikassa
topic Tietojärjestelmätiede Information Systems Science 601 tekoäly terveydenhuolto diagnostiikka koneoppiminen lääketiede
topic_facet 601 Information Systems Science Tietojärjestelmätiede diagnostiikka koneoppiminen lääketiede tekoäly terveydenhuolto
url https://jyx.jyu.fi/handle/123456789/99210 http://www.urn.fi/URN:NBN:fi:jyu-202412308015
work_keys_str_mv AT lehtinenveeti tekoälynhyödyntäminenterveydenhuollondiagnostiikassa