A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source

A Proportional To Absolute Temperature (PTAT) current source is designed in 22 nm CMOS process technology while emphasizing on power consumption, temperature coefficient, line sensitivity, PSRR, and noise performance. The analysis of power consumption across varying supply voltage from 1 V to 1.4 V...

Full description

Bibliographic Details
Main Author: BHOSALE, YOGESH
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/97277
_version_ 1828193036076580864
author BHOSALE, YOGESH
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet BHOSALE, YOGESH Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä BHOSALE, YOGESH Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort BHOSALE, YOGESH
datasource_str_mv jyx
description A Proportional To Absolute Temperature (PTAT) current source is designed in 22 nm CMOS process technology while emphasizing on power consumption, temperature coefficient, line sensitivity, PSRR, and noise performance. The analysis of power consumption across varying supply voltage from 1 V to 1.4 V and temperatures ranging from -40 °C to 120 °C shows the efficiency and stability of the iptat current (PTAT source) and the ibias, the iref current from the ISRC (current source) block. This PTAT current source generates 16.08 A of the iptat current and consumes 67 W power at 1.2 V supply, at room temperature (27 °C). The ISRC block generates the iout, ibias and iref currents. The temperature coefficient of the iptat current is determined, and it has a temperature coefficient of 3.78 kppm/°C. The iout (output current) current of 2 kppm/°C temperature coefficient is obtained by adding the ibias current with the iptat current in specific proportion, which is then further used for driver of Bluetooth transmitter. After the line sensitivity analysis, the iptat current indicates the lowest sensitivity to supply voltage variation of 0.28 %/V, whereas the iout current is the most sensitive with line sensitivity of 0.99 %/V. The noise analysis is done over the frequency range of 10 Hz to 1 GHz, also the PSRR analysis showed a that the iptat current possesses the PSRR of 50 dB at 100 kHz. A Monte Carlo simulation involving 1000 runs quantifies the mismatch variations in key parameters, with 3σ variation of a 4.9 % mismatch observed for the iout current and a 3σ variation of a 6.1 % mismatch for the iptat current. These findings underscore the importance of robust design methodologies to minimize mismatch and enhance circuit reliability.
first_indexed 2024-09-27T20:00:29Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Leroux, Paul", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Panseri, Luigi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Doucet, Stephan", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Pigeard, Bertrand", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "BHOSALE, YOGESH", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-09-27T05:26:07Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-09-27T05:26:07Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/97277", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "A Proportional To Absolute Temperature (PTAT) current source is designed in 22 nm CMOS process technology while emphasizing on power consumption, temperature coefficient, line sensitivity, PSRR, and noise performance. The analysis of power consumption across varying supply voltage from 1 V to 1.4 V and temperatures ranging from -40 \u00b0C to 120 \u00b0C shows the efficiency and stability of the iptat current (PTAT source) and the ibias, the iref current from the ISRC (current source) block. \nThis PTAT current source generates 16.08 \uf06dA of the iptat current and consumes 67 \uf06dW power at 1.2 V supply, at room temperature (27 \u00b0C). The ISRC block generates the iout, ibias and iref currents. The temperature coefficient of the iptat current is determined, and it has a temperature coefficient of 3.78 kppm/\u00b0C. The iout (output current) current of 2 kppm/\u00b0C temperature coefficient is obtained by adding the ibias current with the iptat current in specific proportion, which is then further used for driver of Bluetooth transmitter.\nAfter the line sensitivity analysis, the iptat current indicates the lowest sensitivity to supply voltage variation of 0.28 %/V, whereas the iout current is the most sensitive with line sensitivity of 0.99 %/V. The noise analysis is done over the frequency range of 10 Hz to 1 GHz, also the PSRR analysis showed a that the iptat current possesses the PSRR of 50 dB at 100 kHz. \nA Monte Carlo simulation involving 1000 runs quantifies the mismatch variations in key parameters, with 3\u03c3 variation of a 4.9 % mismatch observed for the iout current and a 3\u03c3 variation of a 6.1 % mismatch for the iptat current. These findings underscore the importance of robust design methodologies to minimize mismatch and enhance circuit reliability.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-09-27T05:26:07Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-09-27T05:26:07Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "45", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "PTAT current source", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "reference current", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "bias current", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "resistor trimming", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "A 67 \u03bcW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202409276152", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Soveltava fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Applied Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "10800", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "business", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4023", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "l\u00e4mp\u00f6tila", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4hk\u00f6tekniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "temperature", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "electrical engineering", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_97277
language eng
last_indexed 2025-03-31T20:01:35Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/d6084c92-d947-457f-8cb6-ab3692cde4d8\/download","text":"URN:NBN:fi:jyu-202409276152.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle BHOSALE, YOGESH A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source PTAT current source reference current bias current resistor trimming Soveltava fysiikka Applied Physics 4023 lämpötila sähkötekniikka temperature electrical engineering
title A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
title_full A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
title_fullStr A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
title_full_unstemmed A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
title_short A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
title_sort 67 μw 1 2 v low area 22 nm cmos ptat bias reference current source
title_txtP A 67 μW, 1.2 V, low area 22-nm CMOS PTAT bias reference current source
topic PTAT current source reference current bias current resistor trimming Soveltava fysiikka Applied Physics 4023 lämpötila sähkötekniikka temperature electrical engineering
topic_facet 4023 Applied Physics PTAT current source Soveltava fysiikka bias current electrical engineering lämpötila reference current resistor trimming sähkötekniikka temperature
url https://jyx.jyu.fi/handle/123456789/97277 http://www.urn.fi/URN:NBN:fi:jyu-202409276152
work_keys_str_mv AT bhosaleyogesh 67mw12vlowarea22nmcmosptatbiasreferencecurrentsource AT bhosaleyogesh a67mw12vlowarea22nmcmosptatbiasreferencecurrentsource