Acoustic phonon tunneling in LiNbO3

In this thesis, the patterning techniques of lithium-niobate-on-insulator silicon chips were investigated to create free-standing membrane platforms of LiNbO3 (lithium niobate) that are separated by a submicron gap for cryogenic acoustic phonon tunneling measurements. A three-layer mask of mr-PosEBR...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Hakanen, Toivo
Muut tekijät: Faculty of Sciences, Matemaattis-luonnontieteellinen tiedekunta, Department of Physics, Fysiikan laitos, University of Jyväskylä, Jyväskylän yliopisto
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2024
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/95982
_version_ 1826225769253175296
author Hakanen, Toivo
author2 Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_facet Hakanen, Toivo Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto Hakanen, Toivo Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_sort Hakanen, Toivo
datasource_str_mv jyx
description In this thesis, the patterning techniques of lithium-niobate-on-insulator silicon chips were investigated to create free-standing membrane platforms of LiNbO3 (lithium niobate) that are separated by a submicron gap for cryogenic acoustic phonon tunneling measurements. A three-layer mask of mr-PosEBR - Al2O3 - Cr was utilized in LiNbO3 dry etching to achieve good gap edge quality. An estimated Cr to LiNbO3 selectivity of 0.3 was achieved with an estimated LiNbO3 etch rate of 6 nm/min and edge wall verticality of 56°. HF vapor was used to etch SiO2 from underneath LiNbO3 and release membrane platforms from bulk, and evaporated Al2O3 was used to protect devices from unwanted corrosion. Vapor etch had a SiO2 etch rate of 0.5 µm/min, which is much higher than values found in literature. Ultimately, sample fabrication failed because the Al2O3 coating on top of membranes didn’t protect the measurement devices fabricated on top of LiNbO3 platforms from HF corrosion. Numerical calculations showed that the heat flux from the acoustic phonon tunneling is the strongest in the crystallographic X-direction, with a value of 5.2 µW/m2 for two semi-infinite plates separated by a 200 nm gap at 0.1 K. Heat fluxes in the Yand Z-directions were 5.0 µW/m2 and 2.1 µW/m2 , respectively, under the same conditions. A similar trend was observed with tunneled power transmittance in the Y- and Z-directions: the Y-direction had higher power transmittance across all incident mode-tunneled mode pairs compared to the Z-direction. Tässä Pro Gradu -tutkielmassa tutkittiin piisirun eristeen päälle kasvatetun litiumniobaattikerroksen (LNOI, lithium-niobate-on-insulator) kuviointitekniikoita. Kuviontitekniikoilla oli tarkoitus valmistaa itseään kannattelevia alustoja LiNbO3- kalvoista alle mikrometrin levyisen raon erottamana, joilla voisi tehdä kryogenisiä mittauksia akustisten fononien tunneloinnista. LiNbO3 kuivaetsauksessa käytettiin kolmikerroksista mr-PosEBR - Al2O3 - Cr -kovaetsausmaskia, jolla saavutettiin hyvä raon reunan jälki. LiNbO3 etsauksen selektiivisyyden arvioitiin olevan 0,3 Cr suhde LiNbO3 reseptillä, minkä LiNbO3 etsausnopeudeksi arvoitiin 6 nm/min ja reunan seinän kaltevuudeksi 56°. LiNbO3 alustat vapautettiin SiO2-kontaktista etsaamallla SiO2 HF-höyryetsauksella. Höyrystettyä Al2O3 käytettiin suojaamaan sirulle rakennettuja mittalaiteita korroosiolta. HF-höyry etsasi SiO2 0,5 µm/min nopeudella, mikä on huomattavasti nopeampaa kuin mitä kirjallisuudesta löytyy. Loppujen lopuksi mitattavien näytteiden valmistus epäonnistui siihen, että suojaava Al2O3-kerros ei oikeasti suojannut LiNbO3-alustojen päälle rakennettuja mittalaitteita HF-korroosiolta. Numeeriset laskelmat osoittivat, että tunneloituvien fononien lämpövuo on voimakkaimmillaan kristallografisessa X-suuntaan. Lämpövuo oli 5,2 µW/m2 kahdelle puoliäärettömälle kappaleelle 200 nm raon erottamana 0,1 K lämpötilassa. Lämpövuot Y- ja Z-suunnissa olivat vastaavasti 5,0 µW/m2 ja 2,1 µW/m2 samoissa olosuhteissa. Samanlainen trendi havaittiin tunneloituvien fononien siirtämällä teholla Y- ja Z-suunnissa: tunneloituneet fononit siirsivät enemmän tulevien fononien tehoa Y-suunnassa Z-suuntaan verrattuna.
first_indexed 2024-09-11T08:49:17Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Maasilta, Ilari", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Geng, Zhuoran", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Hakanen, Toivo", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-06-18T05:53:18Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-06-18T05:53:18Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95982", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis, the patterning techniques of lithium-niobate-on-insulator silicon chips were investigated to create free-standing membrane platforms of LiNbO3 (lithium niobate) that are separated by a submicron gap for cryogenic acoustic phonon tunneling measurements. A three-layer mask of mr-PosEBR - Al2O3 - Cr was utilized in LiNbO3 dry etching to achieve good gap edge quality. An estimated Cr to LiNbO3 selectivity of 0.3 was achieved with an estimated LiNbO3 etch rate of 6 nm/min and edge wall verticality of 56\u00b0. HF vapor was used to etch SiO2 from underneath LiNbO3 and release membrane platforms from bulk, and evaporated Al2O3 was used to protect devices from unwanted corrosion. Vapor etch had a SiO2 etch rate of 0.5 \u00b5m/min, which is much higher than values found in literature. Ultimately, sample fabrication failed because the Al2O3 coating on top of membranes didn\u2019t protect the measurement devices fabricated on top of LiNbO3 platforms from HF corrosion. Numerical calculations showed that the heat flux from the acoustic phonon tunneling is the strongest in the crystallographic X-direction, with a value of 5.2 \u00b5W/m2 for two semi-infinite plates separated by a 200 nm gap at 0.1 K. Heat fluxes in the Yand Z-directions were 5.0 \u00b5W/m2 and 2.1 \u00b5W/m2 , respectively, under the same conditions. A similar trend was observed with tunneled power transmittance in the Y- and Z-directions: the Y-direction had higher power transmittance across all incident mode-tunneled mode pairs compared to the Z-direction.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 Pro Gradu -tutkielmassa tutkittiin piisirun eristeen p\u00e4\u00e4lle kasvatetun litiumniobaattikerroksen (LNOI, lithium-niobate-on-insulator) kuviointitekniikoita. Kuviontitekniikoilla oli tarkoitus valmistaa itse\u00e4\u00e4n kannattelevia alustoja LiNbO3- kalvoista alle mikrometrin levyisen raon erottamana, joilla voisi tehd\u00e4 kryogenisi\u00e4 mittauksia akustisten fononien tunneloinnista. LiNbO3 kuivaetsauksessa k\u00e4ytettiin kolmikerroksista mr-PosEBR - Al2O3 - Cr -kovaetsausmaskia, jolla saavutettiin hyv\u00e4 raon reunan j\u00e4lki. LiNbO3 etsauksen selektiivisyyden arvioitiin olevan 0,3 Cr suhde LiNbO3 reseptill\u00e4, mink\u00e4 LiNbO3 etsausnopeudeksi arvoitiin 6 nm/min ja reunan sein\u00e4n kaltevuudeksi 56\u00b0. LiNbO3 alustat vapautettiin SiO2-kontaktista etsaamallla SiO2 HF-h\u00f6yryetsauksella. H\u00f6yrystetty\u00e4 Al2O3 k\u00e4ytettiin suojaamaan sirulle rakennettuja mittalaiteita korroosiolta. HF-h\u00f6yry etsasi SiO2 0,5 \u00b5m/min nopeudella, mik\u00e4 on huomattavasti nopeampaa kuin mit\u00e4 kirjallisuudesta l\u00f6ytyy. Loppujen lopuksi mitattavien n\u00e4ytteiden valmistus ep\u00e4onnistui siihen, ett\u00e4 suojaava Al2O3-kerros ei oikeasti suojannut LiNbO3-alustojen p\u00e4\u00e4lle rakennettuja mittalaitteita HF-korroosiolta. Numeeriset laskelmat osoittivat, ett\u00e4 tunneloituvien fononien l\u00e4mp\u00f6vuo on voimakkaimmillaan kristallografisessa X-suuntaan. L\u00e4mp\u00f6vuo oli 5,2 \u00b5W/m2 kahdelle puoli\u00e4\u00e4rett\u00f6m\u00e4lle kappaleelle 200 nm raon erottamana 0,1 K l\u00e4mp\u00f6tilassa. L\u00e4mp\u00f6vuot Y- ja Z-suunnissa olivat vastaavasti 5,0 \u00b5W/m2 ja 2,1 \u00b5W/m2 samoissa olosuhteissa. Samanlainen trendi havaittiin tunneloituvien fononien siirt\u00e4m\u00e4ll\u00e4 teholla Y- ja Z-suunnissa: tunneloituneet fononit siirsiv\u00e4t enemm\u00e4n tulevien fononien tehoa Y-suunnassa Z-suuntaan verrattuna.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2024-06-18T05:53:18Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-06-18T05:53:18Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "71", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "acoustic phonons", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "piezoelectricity", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "phonon tunneling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "lithium niobate", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "LiNbO3", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Acoustic phonon tunneling in LiNbO3", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202406184748", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fononit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanorakenteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "phonons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanostructures", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_95982
language eng
last_indexed 2025-02-18T10:56:16Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/8250f5ce-4008-4248-b1b0-e9dd7bc4b4ed\/download","text":"URN:NBN:fi:jyu-202406184748.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Hakanen, Toivo Acoustic phonon tunneling in LiNbO3 acoustic phonons piezoelectricity phonon tunneling lithium niobate LiNbO3 Physics Fysiikka 4021 fononit nanorakenteet phonons nanostructures
title Acoustic phonon tunneling in LiNbO3
title_full Acoustic phonon tunneling in LiNbO3
title_fullStr Acoustic phonon tunneling in LiNbO3 Acoustic phonon tunneling in LiNbO3
title_full_unstemmed Acoustic phonon tunneling in LiNbO3 Acoustic phonon tunneling in LiNbO3
title_short Acoustic phonon tunneling in LiNbO3
title_sort acoustic phonon tunneling in linbo3
title_txtP Acoustic phonon tunneling in LiNbO3
topic acoustic phonons piezoelectricity phonon tunneling lithium niobate LiNbO3 Physics Fysiikka 4021 fononit nanorakenteet phonons nanostructures
topic_facet 4021 Fysiikka LiNbO3 Physics acoustic phonons fononit lithium niobate nanorakenteet nanostructures phonon tunneling phonons piezoelectricity
url https://jyx.jyu.fi/handle/123456789/95982 http://www.urn.fi/URN:NBN:fi:jyu-202406184748
work_keys_str_mv AT hakanentoivo acousticphonontunnelinginlinbo3