Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics

In this work a custom graph convolutional network was succesfully constructed and trained to predict interaction energies in molecular dynamics simulations between Au25(SR)18 nanoclusters and BSA proteins based on their physical and chemical features. Data from molecular dynamics simulations was use...

Full description

Bibliographic Details
Main Author: Sikoniemi, Anssi
Other Authors: Faculty of Sciences, Matemaattis-luonnontieteellinen tiedekunta, Department of Physics, Fysiikan laitos, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/95736
_version_ 1828193032223064064
author Sikoniemi, Anssi
author2 Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_facet Sikoniemi, Anssi Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto Sikoniemi, Anssi Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_sort Sikoniemi, Anssi
datasource_str_mv jyx
description In this work a custom graph convolutional network was succesfully constructed and trained to predict interaction energies in molecular dynamics simulations between Au25(SR)18 nanoclusters and BSA proteins based on their physical and chemical features. Data from molecular dynamics simulations was used as target data in supervised learning. The performance of this model was compared to a feed forward neural network with Weisfeiler-Lehman updates on graph form data. The energy terms predicted were the non-bonded Lennard-Jones and Coulombic terms for the force field used in the simulations. The models were created using the Keras Tensorflow package. Both neural network architectures showed valid performance and the graph convolutional network based on localised spectral filters on graphs was at least as effective as the feed forward neural network with Weisfeiler-Lehman updates. The results show that these machine learning methods could be used in the future to improve molecular dynamics simulations by creating a better initialization for the simulations. To get more reliable results and generalise the models a larger data set would be required. Tässä tutkielmassa tutkittiin vuorovaikutusenergioiden ennustamista Au25(SR)18 nanoklusterien ja BSA-proteiinien välillä kahdella eri neuroverkkoarkkitehtuurilla. Mallien kouluttaminen toteutettiin nanoklusterien ja proteiinien graafimuotoista esitystä hyödyntäen. Ennustetut vuorovaikutusenergiatermit olivat Lennard-Jones ja Coulombinen vuorovaikutusenergia simulaatioissa käytetylle voimakentälle. Ensimmäinen käytetty neuroverkkoarkkitehtuuri oli yksinkertainen eteenpäinsyöttävä malli, jossa datan esikäsittelyssä käytettiin Weisfeiler-Lehman -päivityksiä graafiesityksen parantamiseksi. Toinen käytetty koneoppimismalli oli graafikonvoluutioverkko, joka perustui graafien lokalisoituihin spektraalifilttereihin. Verkot rakennettiin hyödyntämällä Keras Tensorflow -pakettia. Molempien mallien ennustuksien ja validaatiodatan välinen suhde oli hyvin lineaarinen. Molemmat mallit toimivat siis hyvin vuorovaikutusenergioiden ennustamiseen. Näiden tulosten pohjalta työssä käytettyä graafineuroverkkoa ja eteenpäinsyöttävää neuroverkkoa voisi hyödyntää molekyylidynamiikkasimulaatioiden alustamisen parantamiseen tulevaisuudessa. Suurin rajoittava tekijä tutkimuksessa oli käytetyn datan määrä. Luotettavampien tulosten saamiseksi ja mallien yleistämiseksi vaadittaisiin suurempi määrä dataa. Datamäärän lisääminen auttaisi luotettavampien johtopäätösten muodostamiseen myös siitä, kumpi neuroverkkoarkkitehtuuri on luotettavampi ja tehokkaampi vuorovaikutusenergioiden ennustamisessa.
first_indexed 2024-06-11T20:01:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Pihlajam\u00e4ki, Antti", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "H\u00e4kkinen, Hannu", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Sikoniemi, Anssi", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-06-11T08:43:13Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-06-11T08:43:13Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95736", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this work a custom graph convolutional network was succesfully constructed and\ntrained to predict interaction energies in molecular dynamics simulations between\nAu25(SR)18 nanoclusters and BSA proteins based on their physical and chemical\nfeatures. Data from molecular dynamics simulations was used as target data in supervised learning. The performance of this model was compared to a feed forward neural\nnetwork with Weisfeiler-Lehman updates on graph form data. The energy terms\npredicted were the non-bonded Lennard-Jones and Coulombic terms for the force field\nused in the simulations. The models were created using the Keras Tensorflow package.\nBoth neural network architectures showed valid performance and the graph convolutional network based on localised spectral filters on graphs was at least as effective\nas the feed forward neural network with Weisfeiler-Lehman updates. The results\nshow that these machine learning methods could be used in the future to improve\nmolecular dynamics simulations by creating a better initialization for the simulations.\nTo get more reliable results and generalise the models a larger data set would be\nrequired.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa tutkittiin vuorovaikutusenergioiden ennustamista Au25(SR)18\nnanoklusterien ja BSA-proteiinien v\u00e4lill\u00e4 kahdella eri neuroverkkoarkkitehtuurilla.\nMallien kouluttaminen toteutettiin nanoklusterien ja proteiinien graafimuotoista\nesityst\u00e4 hy\u00f6dynt\u00e4en. Ennustetut vuorovaikutusenergiatermit olivat Lennard-Jones ja\nCoulombinen vuorovaikutusenergia simulaatioissa k\u00e4ytetylle voimakent\u00e4lle. Ensimm\u00e4inen k\u00e4ytetty neuroverkkoarkkitehtuuri oli yksinkertainen eteenp\u00e4insy\u00f6tt\u00e4v\u00e4 malli,\njossa datan esik\u00e4sittelyss\u00e4 k\u00e4ytettiin Weisfeiler-Lehman -p\u00e4ivityksi\u00e4 graafiesityksen\nparantamiseksi. Toinen k\u00e4ytetty koneoppimismalli oli graafikonvoluutioverkko, joka\nperustui graafien lokalisoituihin spektraalifilttereihin. Verkot rakennettiin hy\u00f6dynt\u00e4m\u00e4ll\u00e4 Keras Tensorflow -pakettia.\nMolempien mallien ennustuksien ja validaatiodatan v\u00e4linen suhde oli hyvin lineaarinen. Molemmat mallit toimivat siis hyvin vuorovaikutusenergioiden ennustamiseen.\nN\u00e4iden tulosten pohjalta ty\u00f6ss\u00e4 k\u00e4ytetty\u00e4 graafineuroverkkoa ja eteenp\u00e4insy\u00f6tt\u00e4v\u00e4\u00e4\nneuroverkkoa voisi hy\u00f6dynt\u00e4\u00e4 molekyylidynamiikkasimulaatioiden alustamisen parantamiseen tulevaisuudessa. Suurin rajoittava tekij\u00e4 tutkimuksessa oli k\u00e4ytetyn datan\nm\u00e4\u00e4r\u00e4. Luotettavampien tulosten saamiseksi ja mallien yleist\u00e4miseksi vaadittaisiin\nsuurempi m\u00e4\u00e4r\u00e4 dataa. Datam\u00e4\u00e4r\u00e4n lis\u00e4\u00e4minen auttaisi luotettavampien johtop\u00e4\u00e4t\u00f6sten muodostamiseen my\u00f6s siit\u00e4, kumpi neuroverkkoarkkitehtuuri on luotettavampi\nja tehokkaampi vuorovaikutusenergioiden ennustamisessa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2024-06-11T08:43:13Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-06-11T08:43:13Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "52", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "molekyylidynamiikkasimulaatiot", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "nanoklusterit", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "graafikonvoluutioverkko", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202406114504", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biofysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "voimakent\u00e4t (fysiikka)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteiinit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "molekyylidynamiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanotieteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biophysics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "force fields", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteins", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "molecular dynamics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanosciences", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_95736
language eng
last_indexed 2025-03-31T20:01:18Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/4597f06f-d960-44b4-a09a-b6cbcc01bcd3\/download","text":"URN:NBN:fi:jyu-202406114504.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Sikoniemi, Anssi Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics molekyylidynamiikkasimulaatiot nanoklusterit graafikonvoluutioverkko Physics Fysiikka 4021 biofysiikka voimakentät (fysiikka) proteiinit neuroverkot koneoppiminen molekyylidynamiikka nanotieteet biophysics force fields proteins neural networks (information technology) machine learning molecular dynamics nanosciences
title Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
title_full Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
title_fullStr Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
title_full_unstemmed Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
title_short Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
title_sort analyzing protein nanocluster interactions with graph based machine learning for molecular dynamics
title_txtP Analyzing protein-nanocluster interactions with graph-based machine learning for molecular dynamics
topic molekyylidynamiikkasimulaatiot nanoklusterit graafikonvoluutioverkko Physics Fysiikka 4021 biofysiikka voimakentät (fysiikka) proteiinit neuroverkot koneoppiminen molekyylidynamiikka nanotieteet biophysics force fields proteins neural networks (information technology) machine learning molecular dynamics nanosciences
topic_facet 4021 Fysiikka Physics biofysiikka biophysics force fields graafikonvoluutioverkko koneoppiminen machine learning molecular dynamics molekyylidynamiikka molekyylidynamiikkasimulaatiot nanoklusterit nanosciences nanotieteet neural networks (information technology) neuroverkot proteiinit proteins voimakentät (fysiikka)
url https://jyx.jyu.fi/handle/123456789/95736 http://www.urn.fi/URN:NBN:fi:jyu-202406114504
work_keys_str_mv AT sikoniemianssi analyzingproteinnanoclusterinteractionswithgraphbasedmachinelearningformoleculard