Anomaly detection in IoT data streams

Kiinnostus IoT-järjestelmiin on selkeästi kasvussa ja sen myötä on entistä tärkeämpää tunnistaa, että IoT-datavirrat sisältävät poikkeavuuksia. Näitä voivat aiheuttaa järjestelmien tai tietoliikenteen toimimattomuus tai kyberhyökkäykset. Poikkeavuudet voivat johtaa vääriin johtopäätelmiin, jos niitä...

Full description

Bibliographic Details
Main Author: Strömberg, Heta
Other Authors: Faculty of Information Technology, Informaatioteknologian tiedekunta, Information Technology, Informaatioteknologia, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/93222
_version_ 1828193028085383168
author Strömberg, Heta
author2 Faculty of Information Technology Informaatioteknologian tiedekunta Information Technology Informaatioteknologia University of Jyväskylä Jyväskylän yliopisto
author_facet Strömberg, Heta Faculty of Information Technology Informaatioteknologian tiedekunta Information Technology Informaatioteknologia University of Jyväskylä Jyväskylän yliopisto Strömberg, Heta Faculty of Information Technology Informaatioteknologian tiedekunta Information Technology Informaatioteknologia University of Jyväskylä Jyväskylän yliopisto
author_sort Strömberg, Heta
datasource_str_mv jyx
description Kiinnostus IoT-järjestelmiin on selkeästi kasvussa ja sen myötä on entistä tärkeämpää tunnistaa, että IoT-datavirrat sisältävät poikkeavuuksia. Näitä voivat aiheuttaa järjestelmien tai tietoliikenteen toimimattomuus tai kyberhyökkäykset. Poikkeavuudet voivat johtaa vääriin johtopäätelmiin, jos niitä ei löydetä ja käsitellä ajoissa. Poikkeavuuksien löytämiseen IoT-datavirroista on erilaisia menettelytapoja ja menettelytavan valinta on riippuvainen erilaisista seikoista, kuten IoT-arkkitehtuurista ja poikkeavuuden tyypistä. Tämän pro gradun aiheena on luoda skaalautuva menettelytapa poikkeavuuksien havaitsemiseksi lennosta IoT-datavirroista. Suunnittelutieteen artifaktana esitellään prosessikaavio ja tarkistuslista, joiden avulla löydetään parhaiten sopiva menettelytapa IoT-datavirtojen poikkeavuuksien havaitsemiseksi. Since the interest to IoT systems is constantly increasing, it is vital to recognize that the IoT data streams contain anomalies. Anomalies can be caused by system failure, network issues or malicious attacks and can lead to misinterpreted results if they are not found and handled properly. There are different ways to find the abnormal values from IoT data streams. The approach varies based on different aspects such as the IoT architecture and type of the anomaly. This Master's thesis presents a scalable procedure to detect anomalies from IoT data streams on the fly. As an artifact of design science it was created a procedure diagram and checklist to find the appropriate solution for each project of detecting anomalies from IoT data streams.
first_indexed 2024-02-02T21:00:31Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Harju, Lasse", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Str\u00f6mberg, Heta", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-02-02T07:04:43Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-02-02T07:04:43Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/93222", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Kiinnostus IoT-j\u00e4rjestelmiin on selke\u00e4sti kasvussa ja sen my\u00f6t\u00e4 on entist\u00e4 t\u00e4rke\u00e4mp\u00e4\u00e4 tunnistaa, ett\u00e4 IoT-datavirrat sis\u00e4lt\u00e4v\u00e4t poikkeavuuksia. N\u00e4it\u00e4 voivat aiheuttaa j\u00e4rjestelmien tai tietoliikenteen toimimattomuus tai kyberhy\u00f6kk\u00e4ykset. Poikkeavuudet voivat johtaa v\u00e4\u00e4riin johtop\u00e4\u00e4telmiin, jos niit\u00e4 ei l\u00f6ydet\u00e4 ja k\u00e4sitell\u00e4 ajoissa. Poikkeavuuksien l\u00f6yt\u00e4miseen IoT-datavirroista on erilaisia menettelytapoja ja menettelytavan valinta on riippuvainen erilaisista seikoista, kuten IoT-arkkitehtuurista ja poikkeavuuden tyypist\u00e4. T\u00e4m\u00e4n pro gradun aiheena on luoda skaalautuva menettelytapa poikkeavuuksien havaitsemiseksi lennosta IoT-datavirroista. Suunnittelutieteen artifaktana esitell\u00e4\u00e4n prosessikaavio ja tarkistuslista, joiden avulla l\u00f6ydet\u00e4\u00e4n parhaiten sopiva menettelytapa IoT-datavirtojen poikkeavuuksien havaitsemiseksi.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Since the interest to IoT systems is constantly increasing, it is vital to recognize that the IoT data streams contain anomalies. Anomalies can be caused by system failure, network issues or malicious attacks and can lead to misinterpreted results if they are not found and handled properly. There are different ways to find the abnormal values from IoT data streams. The approach varies based on different aspects such as the IoT architecture and type of the anomaly. This Master's thesis presents a scalable procedure to detect anomalies from IoT data streams on the fly. As an artifact of design science it was created a procedure diagram and checklist to find the appropriate solution for each project of detecting anomalies from IoT data streams.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-02-02T07:04:43Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-02-02T07:04:43Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "101", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "data anomalies", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "statistic", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "classification", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "clustering", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Anomaly detection in IoT data streams", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202402021729", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "esineiden internet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "aikasarjat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Internet of things", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algorithms", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "time series", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_93222
language eng
last_indexed 2025-03-31T20:01:23Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/4a303e7c-dd94-432f-a910-048cbe24573f\/download","text":"URN:NBN:fi:jyu-202402021729.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Strömberg, Heta Anomaly detection in IoT data streams data anomalies statistic classification clustering Mathematical Information Technology Tietotekniikka 602 koneoppiminen esineiden internet data algoritmit aikasarjat big data machine learning Internet of things algorithms time series
title Anomaly detection in IoT data streams
title_full Anomaly detection in IoT data streams
title_fullStr Anomaly detection in IoT data streams Anomaly detection in IoT data streams
title_full_unstemmed Anomaly detection in IoT data streams Anomaly detection in IoT data streams
title_short Anomaly detection in IoT data streams
title_sort anomaly detection in iot data streams
title_txtP Anomaly detection in IoT data streams
topic data anomalies statistic classification clustering Mathematical Information Technology Tietotekniikka 602 koneoppiminen esineiden internet data algoritmit aikasarjat big data machine learning Internet of things algorithms time series
topic_facet 602 Internet of things Mathematical Information Technology Tietotekniikka aikasarjat algorithms algoritmit big data classification clustering data data anomalies esineiden internet koneoppiminen machine learning statistic time series
url https://jyx.jyu.fi/handle/123456789/93222 http://www.urn.fi/URN:NBN:fi:jyu-202402021729
work_keys_str_mv AT strömbergheta anomalydetectioniniotdatastreams