Classification of cortical TMS locations according to multiple upper limb muscle responses

Johdanto. Motorisen aivokuoren alueita on aiemmin kartoitettu siltä kannalta, että yksittäisillä lihaksilla on aivokuorella edustusalueita, joista niitä kontrolloidaan. Vähitellen on ymmärretty, että tällaiset edustusalueet ovat päällekkäisiä. Tämän on oletettu olevan osoitus lihasten välisistä syne...

Full description

Bibliographic Details
Main Author: Onnia, Vesa
Other Authors: Liikuntatieteellinen tiedekunta, Faculty of Sport and Health Sciences, Liikunta- ja terveystieteet, Sport and Health Sciences, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/88544
_version_ 1828193043313852416
author Onnia, Vesa
author2 Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_facet Onnia, Vesa Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä Onnia, Vesa Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_sort Onnia, Vesa
datasource_str_mv jyx
description Johdanto. Motorisen aivokuoren alueita on aiemmin kartoitettu siltä kannalta, että yksittäisillä lihaksilla on aivokuorella edustusalueita, joista niitä kontrolloidaan. Vähitellen on ymmärretty, että tällaiset edustusalueet ovat päällekkäisiä. Tämän on oletettu olevan osoitus lihasten välisistä synergioista, sekä motorisen aivokuoren toiminnallisista alueista, joista toimintoja ohjataan. Motorisen aivokuoren kartoitukseen liittyvä tutkimus onkin menossa toiminnalliseen suuntaan ns. toimintakarttojen löytämiseksi. Tällaisessa tutkimuksessa olisi edullista, jos tahdonalaisen liikkeen perusteella mitattuja tekijöitä voitaisiin liittää spesifeihin motorisen aivokuoren lokaatioihin. Tämä vaatisi esimerkiksi mahdollisuutta liittää transkraniaalisen magneettisen stimulaation (TMS) indusoimat motoriset herätepotentiaalit (MEP) tahdonalaisesta liikkeestä tallennettuun elektromyografiaan (EMG). Ennen tätä pitäisi tietää, kuinka tarkasti motorisen aivokuoren eri alueet voidaan erottaa toisistaan näiltä alueilta stimuloitujen MEP–signaalien perusteella. Tätä tarkoitusta varten tämä opinnäytetyö käsittelee useista TMS–menetelmää käyttäen stimuloiduista yläraajan lihaksista tallennettujen MEP–vasteiden luokittelua niitä vastaavien aivokuoren sijaintien mukaisiin luokkiin. Myös erilaisten lihasyhdistelmien vaikutusta luokittelutarkkuuteen tutkittiin. Menetelmät. Tutkimuksen tulokset saavutettiin mittaamalla seitsemää vapaaehtoista koehenkilöä, joista jokainen osallistui yhteen mittausistuntoon. Abductor pollicis breviksen, flexor carpi radialiksen ja biceps brachiin pitkän pään hotspot–pisteitä stimuloitiin TMS-sekvensseillä intensiteetillä, joka oli 120% lepotilan motorisesta kynnyksestä (rMT). Ärsykkeiden aiheuttamat MEP–vasteet mitattiin 16 yläraajan lihaksesta. Saatua MEP–raakadataa käytettiin monikerroksisten perseptroniverkko– (MLP) luokittimien rakentamiseen ja testaamiseen. Luokittelutarkkuuden perusteella arvioitiin luokittelun tehokkuutta ja eri lihasyhdistelmien kykyä erotella MEP–vasteet hotspot–lokaatioiden muodostamiin luokkiin. Tulokset. Korkeimpien luokittelutarkkuuksien mediaani oli 0.91 stimulusintensiteetillä ja vastaava parhaiden luokittelutulosten antaneiden lihasyhdistelmäkokojen mediaani oli 7. Tilastollisesti merkitsevästi korkeimman luokitustarkkuuden antaneet lihasyhdistelmät olivat yksilöllisiä sekä yhdistelmän koon että yhdistelmään sisältyvien lihasten suhteen. Johtopäätökset. Luokittelu onnistuu hyvin, kun luokkina toimivat lihasten hotspot–pisteet motorisella aivokuorella valitaan tässä tutkimuksessa esitetyllä tavalla. Yksittäisten lihasyhdistelmien, jotka antoivat korkeimman luokitustarkkuuden, arvioitiin olevan osoitus hermo–lihaskontrollin yksilöllisyydestä, vaikka näillä ei olekaan yhtä selvää yhteyttä lihassynergioihin, kuin aikaisemmissa tutkimuksissa päällekkäisistä lihasten edustusalueista on arvioitu. Lisätutkimuksia tarvitaan sen selvittämiseksi, kuinka lähellä toisiaan motorisen aivokuoren stimuloidut pisteet voivat olla, jotta luokittelu edelleen onnistuisi. Introduction. In the cerebral cortex, areas of the motor cortex have previously been mapped from the point of view that individual muscles have specific areas in the cortex from which they are controlled. It has gradually been understood that the muscle representation areas on the cortex overlap. This has been assumed to indicate individual synergies between muscles and that the motor cortex contains functional areas from which complex actions are controlled. Thus, research related to the mapping of the motor cortex is going in a functional direction aiming to find so–called action maps. For this kind of research, it would be advantageous if different factors measured from voluntary movement could be connected to specific locations of the motor cortex. This would require, for example, to be able to connect motor evoked potentials (MEP) induced by transcranial magnetic stimulation (TMS) to the electromyography (EMG) recorded from voluntary movement. Before this, one should know how accurately different areas of the motor cortex can be separated from each other based on the MEP signals stimulated from these areas. For this purpose, this thesis deals with the classification of cortical stimulus locations according to MEP patterns recorded from multiple upper–limb muscles induced by TMS. The effect of different muscle combinations on classification accuracy was also investigated. Methods. Results in this study were achieved by measuring seven volunteers, who participated in one measurement session. The hotspot locations of the abductor pollicis brevis, flexor carpi radialis and biceps brachii’s long head were stimulated by TMS sequences at 120% of resting motor threshold (rMT) stimulus intensity. The MEPs elicited by the stimuli were recorded in 16 muscles of the upper limb. The obtained raw MEP data was used to build and test multilayer perceptron (MLP) classifiers. Based on the classification accuracy, the effectiveness of the classification and the ability of different muscle combinations to separate MEP patterns into the classes formed by the hotspot locations were evaluated. Results. The median of the highest estimated mean classification accuracy was 0.91 and the corresponding median of combination size was 7. The muscle combinations that gave statistically significantly the highest classification accuracy were unique in terms of both the combination size and the muscles included in the combination. Conclusion. The classification succeeds well when the muscle hotspots on the motor cortex, which act as classes, are selected as presented in this study. Individual muscle combinations giving the highest classification accuracies were assumed to indicate the individual versatility of neuromuscular control, although there is not as clear connection to muscle synergies as previous studies have established. Further studies are needed to clarify how close to each other the stimulated points of the motor cortex can be for the classification to be successful.
first_indexed 2023-08-16T20:17:30Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Piitulainen, Harri", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Onnia, Vesa", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-08-16T05:37:38Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-08-16T05:37:38Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/88544", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Johdanto. Motorisen aivokuoren alueita on aiemmin kartoitettu silt\u00e4 kannalta, ett\u00e4 yksitt\u00e4isill\u00e4 lihaksilla on aivokuorella edustusalueita, joista niit\u00e4 kontrolloidaan. V\u00e4hitellen on ymm\u00e4rretty, ett\u00e4 t\u00e4llaiset edustusalueet ovat p\u00e4\u00e4llekk\u00e4isi\u00e4. T\u00e4m\u00e4n on oletettu olevan osoitus lihasten v\u00e4lisist\u00e4 synergioista, sek\u00e4 motorisen aivokuoren toiminnallisista alueista, joista toimintoja ohjataan. Motorisen aivokuoren kartoitukseen liittyv\u00e4 tutkimus onkin menossa toiminnalliseen suuntaan ns. toimintakarttojen l\u00f6yt\u00e4miseksi. T\u00e4llaisessa tutkimuksessa olisi edullista, jos tahdonalaisen liikkeen perusteella mitattuja tekij\u00f6it\u00e4 voitaisiin liitt\u00e4\u00e4 spesifeihin motorisen aivokuoren lokaatioihin. T\u00e4m\u00e4 vaatisi esimerkiksi mahdollisuutta liitt\u00e4\u00e4 transkraniaalisen magneettisen stimulaation (TMS) indusoimat motoriset her\u00e4tepotentiaalit (MEP) tahdonalaisesta liikkeest\u00e4 tallennettuun elektromyografiaan (EMG). Ennen t\u00e4t\u00e4 pit\u00e4isi tiet\u00e4\u00e4, kuinka tarkasti motorisen aivokuoren eri alueet voidaan erottaa toisistaan n\u00e4ilt\u00e4 alueilta stimuloitujen MEP\u2013signaalien perusteella. T\u00e4t\u00e4 tarkoitusta varten t\u00e4m\u00e4 opinn\u00e4ytety\u00f6 k\u00e4sittelee useista TMS\u2013menetelm\u00e4\u00e4 k\u00e4ytt\u00e4en stimuloiduista yl\u00e4raajan lihaksista tallennettujen MEP\u2013vasteiden luokittelua niit\u00e4 vastaavien aivokuoren sijaintien mukaisiin luokkiin. My\u00f6s erilaisten lihasyhdistelmien vaikutusta luokittelutarkkuuteen tutkittiin.\n\nMenetelm\u00e4t. Tutkimuksen tulokset saavutettiin mittaamalla seitsem\u00e4\u00e4 vapaaehtoista koehenkil\u00f6\u00e4, joista jokainen osallistui yhteen mittausistuntoon. Abductor pollicis breviksen, flexor carpi radialiksen ja biceps brachiin pitk\u00e4n p\u00e4\u00e4n hotspot\u2013pisteit\u00e4 stimuloitiin TMS-sekvensseill\u00e4 intensiteetill\u00e4, joka oli 120% lepotilan motorisesta kynnyksest\u00e4 (rMT). \u00c4rsykkeiden aiheuttamat MEP\u2013vasteet mitattiin 16 yl\u00e4raajan lihaksesta. Saatua MEP\u2013raakadataa k\u00e4ytettiin monikerroksisten perseptroniverkko\u2013 (MLP) luokittimien rakentamiseen ja testaamiseen. Luokittelutarkkuuden perusteella arvioitiin luokittelun tehokkuutta ja eri lihasyhdistelmien kyky\u00e4 erotella MEP\u2013vasteet hotspot\u2013lokaatioiden muodostamiin luokkiin.\n\nTulokset. Korkeimpien luokittelutarkkuuksien mediaani oli 0.91 stimulusintensiteetill\u00e4 ja vastaava parhaiden luokittelutulosten antaneiden lihasyhdistelm\u00e4kokojen mediaani oli 7. Tilastollisesti merkitsev\u00e4sti korkeimman luokitustarkkuuden antaneet lihasyhdistelm\u00e4t olivat yksil\u00f6llisi\u00e4 sek\u00e4 yhdistelm\u00e4n koon ett\u00e4 yhdistelm\u00e4\u00e4n sis\u00e4ltyvien lihasten suhteen.\n\nJohtop\u00e4\u00e4t\u00f6kset. Luokittelu onnistuu hyvin, kun luokkina toimivat lihasten hotspot\u2013pisteet motorisella aivokuorella valitaan t\u00e4ss\u00e4 tutkimuksessa esitetyll\u00e4 tavalla. Yksitt\u00e4isten lihasyhdistelmien, jotka antoivat korkeimman luokitustarkkuuden, arvioitiin olevan osoitus hermo\u2013lihaskontrollin yksil\u00f6llisyydest\u00e4, vaikka n\u00e4ill\u00e4 ei olekaan yht\u00e4 selv\u00e4\u00e4 yhteytt\u00e4 lihassynergioihin, kuin aikaisemmissa tutkimuksissa p\u00e4\u00e4llekk\u00e4isist\u00e4 lihasten edustusalueista on arvioitu. Lis\u00e4tutkimuksia tarvitaan sen selvitt\u00e4miseksi, kuinka l\u00e4hell\u00e4 toisiaan motorisen aivokuoren stimuloidut pisteet voivat olla, jotta luokittelu edelleen onnistuisi.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Introduction. In the cerebral cortex, areas of the motor cortex have previously been mapped from the point of view that individual muscles have specific areas in the cortex from which they are controlled. It has gradually been understood that the muscle representation areas on the cortex overlap. This has been assumed to indicate individual synergies between muscles and that the motor cortex contains functional areas from which complex actions are controlled. Thus, research related to the mapping of the motor cortex is going in a functional direction aiming to find so\u2013called action maps. For this kind of research, it would be advantageous if different factors measured from voluntary movement could be connected to specific locations of the motor cortex. This would require, for example, to be able to connect motor evoked potentials (MEP) induced by transcranial magnetic stimulation (TMS) to the electromyography (EMG) recorded from voluntary movement. Before this, one should know how accurately different areas of the motor cortex can be separated from each other based on the MEP signals stimulated from these areas. For this purpose, this thesis deals with the classification of cortical stimulus locations according to MEP patterns recorded from multiple upper\u2013limb muscles induced by TMS. The effect of different muscle combinations on classification accuracy was also investigated.\n\nMethods. Results in this study were achieved by measuring seven volunteers, who participated in one measurement session. The hotspot locations of the abductor pollicis brevis, flexor carpi radialis and biceps brachii\u2019s long head were stimulated by TMS sequences at 120% of resting motor threshold (rMT) stimulus intensity. The MEPs elicited by the stimuli were recorded in 16 muscles of the upper limb. The obtained raw MEP data was used to build and test multilayer perceptron (MLP) classifiers. Based on the classification accuracy, the effectiveness of the classification and the ability of different muscle combinations to separate MEP patterns into the classes formed by the hotspot locations were evaluated.\n\nResults. The median of the highest estimated mean classification accuracy was 0.91 and the corresponding median of combination size was 7. The muscle combinations that gave statistically significantly the highest classification accuracy were unique in terms of both the combination size and the muscles included in the combination.\n\nConclusion. The classification succeeds well when the muscle hotspots on the motor cortex, which act as classes, are selected as presented in this study. Individual muscle combinations giving the highest classification accuracies were assumed to indicate the individual versatility of neuromuscular control, although there is not as clear connection to muscle synergies as previous studies have established. Further studies are needed to clarify how close to each other the stimulated points of the motor cortex can be for the classification to be successful.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-08-16T05:37:38Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-08-16T05:37:38Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "117", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "sensorimotor control", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "motor evoked potential", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "multilayer perceptron", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "functional brain mapping", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Classification of cortical TMS locations according to multiple upper limb muscle responses", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202308164654", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Liikuntatieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Liikunta- ja terveystieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Biomekaniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Biomechanics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "5012", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lihakset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "motoriikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "transkraniaalinen magneettistimulaatio", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "luokitus (toiminta)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "muscles", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "motor functions", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "transcranial magnetic stimulation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "classification", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_88544
language eng
last_indexed 2025-03-31T20:02:41Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/15927c24-2a21-425a-824c-6ce6dd179290\/download","text":"URN:NBN:fi:jyu-202308164654.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Onnia, Vesa Classification of cortical TMS locations according to multiple upper limb muscle responses sensorimotor control motor evoked potential multilayer perceptron functional brain mapping Biomekaniikka Biomechanics 5012 lihakset motoriikka transkraniaalinen magneettistimulaatio luokitus (toiminta) muscles motor functions transcranial magnetic stimulation classification
title Classification of cortical TMS locations according to multiple upper limb muscle responses
title_full Classification of cortical TMS locations according to multiple upper limb muscle responses
title_fullStr Classification of cortical TMS locations according to multiple upper limb muscle responses Classification of cortical TMS locations according to multiple upper limb muscle responses
title_full_unstemmed Classification of cortical TMS locations according to multiple upper limb muscle responses Classification of cortical TMS locations according to multiple upper limb muscle responses
title_short Classification of cortical TMS locations according to multiple upper limb muscle responses
title_sort classification of cortical tms locations according to multiple upper limb muscle responses
title_txtP Classification of cortical TMS locations according to multiple upper limb muscle responses
topic sensorimotor control motor evoked potential multilayer perceptron functional brain mapping Biomekaniikka Biomechanics 5012 lihakset motoriikka transkraniaalinen magneettistimulaatio luokitus (toiminta) muscles motor functions transcranial magnetic stimulation classification
topic_facet 5012 Biomechanics Biomekaniikka classification functional brain mapping lihakset luokitus (toiminta) motor evoked potential motor functions motoriikka multilayer perceptron muscles sensorimotor control transcranial magnetic stimulation transkraniaalinen magneettistimulaatio
url https://jyx.jyu.fi/handle/123456789/88544 http://www.urn.fi/URN:NBN:fi:jyu-202308164654
work_keys_str_mv AT onniavesa classificationofcorticaltmslocationsaccordingtomultipleupperlimbmuscleresponses