Extraction of mismatch negativity from electroencephalography data

In this thesis, we consider three procedures to extract the mismatch negativity, a component of event-related potential, from electroencephalography data: optimal digital filtering, wavelet decomposition, and independent component analysis decomposition procedures. The procedures are compared on two...

Full description

Bibliographic Details
Main Author: Kalyakin, Igor
Other Authors: University of Jyväskylä, Jyväskylän yliopisto
Format: Doctoral dissertation
Language:eng
Published: 2010
Online Access: https://jyx.jyu.fi/handle/123456789/82878
_version_ 1828193024000131072
author Kalyakin, Igor
author2 University of Jyväskylä Jyväskylän yliopisto
author_facet Kalyakin, Igor University of Jyväskylä Jyväskylän yliopisto Kalyakin, Igor University of Jyväskylä Jyväskylän yliopisto
author_sort Kalyakin, Igor
datasource_str_mv jyx
description In this thesis, we consider three procedures to extract the mismatch negativity, a component of event-related potential, from electroencephalography data: optimal digital filtering, wavelet decomposition, and independent component analysis decomposition procedures. The procedures are compared on two different datasets, stressing their advantages over the conventional difference wave procedure. The main results of the thesis support the use of the wavelet decomposition and independent component analysis decomposition procedures to reveal the experimental effects which are expected from the literature, but not distinguishable through the traditional procedure, and show that these developed procedures may allow us to reduce the duration of an experimental session. Also, we discuss some practical issues related to the use of independent component analysis-based procedures in the extraction of the mismatch negativity. Finally, we consider a method for spatial denoising in multi-channel electroencephalography data, which can be used as a preprocessing step prior to the extraction of the mismatch negativity or any event-related potential as well.
first_indexed 2022-08-30T20:00:44Z
format Väitöskirja
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Kalyakin, Igor", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-08-30T12:18:32Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-08-30T12:18:32Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2010", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.isbn", "value": "978-951-39-9384-9", "language": null, "element": "identifier", "qualifier": "isbn", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/82878", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis, we consider three procedures to extract the mismatch negativity, a component of event-related potential, from electroencephalography data: optimal digital filtering, wavelet decomposition, and independent component analysis decomposition procedures. The procedures are compared on two different datasets, stressing their advantages over the conventional difference wave procedure. The main results of the thesis support the use of the wavelet decomposition and independent component analysis decomposition procedures to reveal the experimental effects which are expected from the literature, but not distinguishable through the traditional procedure, and show that these developed procedures may allow us to reduce the duration of an experimental session. Also, we discuss some practical issues related to the use of independent component analysis-based procedures in the extraction of the mismatch negativity. Finally, we consider a method for spatial denoising in multi-channel electroencephalography data, which can be used as a preprocessing step prior to the extraction of the mismatch negativity or any event-related potential as well.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Harri Hirvi (hirvi@jyu.fi) on 2022-08-30T12:18:32Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-08-30T12:18:32Z (GMT). No. of bitstreams: 0\n Previous issue date: 2010", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.relation.ispartofseries", "value": "Jyv\u00e4skyl\u00e4 studies in computing", "language": null, "element": "relation", "qualifier": "ispartofseries", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli I:</b> Kalyakin, I., Gonz\u00e1lez Vega, N., Joutsensalo, J., Huttunen, T., Kaartinen, J., & Lyytinen, H. (2007). Optimal digital filtering versus difference waves on the mismatch negativity in an uninterrupted sound paradigm. <i>Developmental Neuropsychology, 31(3), 429-452.</i> DOI: <a href=\"https://doi.org/10.1080/87565640701229607\"target=\"_blank\">10.1080/87565640701229607</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli II:</b> Cong, F., Huang, Y., Kalyakin, I., Li, H., Huttunen, T., Lyytinen, H., & Ristaniemi, T. (2012). Frequency-response-based wavelet decomposition for extracting children\u2019s mismatch negativity elicited by uninterrupted sound. <i>Journal of Medical and Biological Engineering, 32(3), 205-214.</i>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli III:</b> Kalyakin, I., Gonz\u00e1lez Vega, N., & Lyytinen, H. (2008). Extraction of the Mismatch Negativity on two paradigms using independent component analysis. In <i>21st IEEE International Symposium on Computer-Based Medical Systems, 59-64.</i> DOI: <a href=\"https://doi.org/10.1109/CBMS.2008.72\"target=\"_blank\">10.1109/CBMS.2008.72</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli IV:</b> Kalyakin, I., Gonz\u00e1lez Vega, N., K\u00e4rkk\u00e4inen, T., & Lyytinen, H. (2008). Independent component analysis on the mismatch negativity in an uninterrupted sound paradigm. <i>Journal of Neuroscience Methods, 174(2), 301-312.</i> DOI: <a href=\"https://doi.org/10.1016/j.jneumeth.2008.07.012\"target=\"_blank\">10.1016/j.jneumeth.2008.07.012</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli V:</b> Kalyakin, I., Gonz\u00e1lez Vega, N., Ivannikov, A., & Lyytinen, H. (2009). Extraction of the Mismatch Negativity Elicited by Sound Duration Decrements: A Comparison of Three Procedures. <i>Data & Knowledge Engineering, 68, 1411-1426.</i> DOI: <a href=\"https://doi.org/10.1016/j.datak.2009.07.004\"target=\"_blank\">10.1016/j.datak.2009.07.004</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli VI:</b> Cong, F., Kalyakin, I., Ristaniemi, T., & Lyytinen, H. (2008). Drawback of ICA Procedure on EEG: Polarity Indeterminacy at Local Optimization. In <i>14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, 202-205.</i> DOI: <a href=\"https://doi.org/10.1007/978-3-540-69367-3_55\"target=\"_blank\">10.1007/978-3-540-69367-3_55</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli VII:</b> Cong, F., Zhang, Z., Kalyakin, I., Huttunen-Scott, T., Lyytinen, H., & Ristaniemi, T. (2009). Non-negative matrix factorization vs. FastICA on mismatch negativity of children. In <i>Proceedings of International Joint Conference on Neural Networks, 586-590.</i> DOI: <a href=\"https://doi.org/10.1109/IJCNN.2009.5179068\"target=\"_blank\">10.1109/IJCNN.2009.5179068</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli VIII:</b> Ivannikov, A., Kalyakin, I., H\u00e4m\u00e4l\u00e4inen, J., Lepp\u00e4nen, P. H., Ristaniemi, T., Lyytinen, H., & K\u00e4rkk\u00e4inen, T. (2009). ERP denoising in multichannel EEG data using contrasts between signal and noise subspaces. <i>Journal of Neuroscience Methods, 180(2), 340-351.</i> DOI: <a href=\"https://doi.org/10.1016/j.jneumeth.2009.03.021\"target=\"_blank\">10.1016/j.jneumeth.2009.03.021</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Extraction of mismatch negativity from electroencephalography data", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "doctoral thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:ISBN:978-951-39-9384-9", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_db06", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "doctoralThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.date.digitised", "value": "2022", "language": null, "element": "date", "qualifier": "digitised", "schema": "dc"}]
id jyx.123456789_82878
language eng
last_indexed 2025-03-31T20:02:19Z
main_date 2010-01-01T00:00:00Z
main_date_str 2010
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/780f9f3d-ac16-489f-9e40-aaf6ce205cdb\/download","text":"Kalyakin_Igor_screen.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2010
record_format qdc
source_str_mv jyx
spellingShingle Kalyakin, Igor Extraction of mismatch negativity from electroencephalography data
title Extraction of mismatch negativity from electroencephalography data
title_full Extraction of mismatch negativity from electroencephalography data
title_fullStr Extraction of mismatch negativity from electroencephalography data Extraction of mismatch negativity from electroencephalography data
title_full_unstemmed Extraction of mismatch negativity from electroencephalography data Extraction of mismatch negativity from electroencephalography data
title_short Extraction of mismatch negativity from electroencephalography data
title_sort extraction of mismatch negativity from electroencephalography data
title_txtP Extraction of mismatch negativity from electroencephalography data
url https://jyx.jyu.fi/handle/123456789/82878 http://www.urn.fi/URN:ISBN:978-951-39-9384-9
work_keys_str_mv AT kalyakinigor extractionofmismatchnegativityfromelectroencephalographydata