Markov chain backward stochastic differential equations in modeling insurance policy

Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen stokastinen differentiaaliyhtälö). Seuraamme ensisijaisena lähteenä Boualem Djeh...

Full description

Bibliographic Details
Main Author: Hänninen, Henri
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/82420
_version_ 1828193052910419968
author Hänninen, Henri
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Hänninen, Henri Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Hänninen, Henri Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Hänninen, Henri
datasource_str_mv jyx
description Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen stokastinen differentiaaliyhtälö). Seuraamme ensisijaisena lähteenä Boualem Djehichen ja Björn Löfdahlin artikkelia Nonlinear reserving in life insurance: Aggregation and mean-field approximation. Muotoilemme ja todistamme ensimmäisten lukujen väitteet, osittain eri oletuksin. Markovin ketju BSDE:iden määrittelyä varten tarvitsemme sopivan yleistä stokastisen integroinnin ja Markovin prosessien teoriaa. Annamme tarvittavat esitiedot todennäköisyysteoriasta ja integroinnin teoriasta. Esittelemme martingaalien teoriaa, jotta voimme määritellä stokastisen integraalin semimartingaalien suhteen. Todistamme olemassaolon ja yksikäsitteisyyden Markovin ketju BSDE:iden ratkaisulle. Todistus mukailee vastaavaa Brownin liikkeen tapausta. Tutkimme myös erityistapausta, jossa Markovin ketju BSDE:iden ensimmäisen asteen termin kerroinfunktio on deterministinen Markovin ketjun ja varannon funktio. Osoitamme, että tällöin varanto on deterministinen Markovin ketjun funktio. Todistamme, että tässä tapauksessa varanto toteuttaa epälineaarisen Thielen yhtälön. In this thesis we introduce Markov chain backward stochastic differential equations (BSDE), in aim to let us model insurance policies with payments dependent on the policy reserve. We prove the existence and uniqueness of a solution to the BSDEs. In the case of a deterministic driver for the BSDE, we prove that the modeled reserve is a solution to a nonlinear Thiele equation. For our main results we follow the article Nonlinear reserving in life insurance: Aggregation and mean-field approximation by Boualem Djehiche and Björn Löfdahl. To define Markov chain BSDEs and prove our main results, we need suitably general theory of stochastic integration and Markov processes. After preliminary results, we define the stochastic integral with respect to semimartingales. Then we introduce Markov processes to study the model of the insurance policy.
first_indexed 2022-08-01T20:00:26Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Geiss, Stefan", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "H\u00e4nninen, Henri", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-08-01T05:20:31Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-08-01T05:20:31Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/82420", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon m\u00e4\u00e4rittelyyn ja mallintamiseen k\u00e4yt\u00e4mme Markovin ketju BSDE:it\u00e4 (Markovin ketju takaperoinen stokastinen differentiaaliyht\u00e4l\u00f6). Seuraamme ensisijaisena l\u00e4hteen\u00e4 Boualem Djehichen ja Bj\u00f6rn L\u00f6fdahlin artikkelia Nonlinear reserving in life insurance: Aggregation and mean-field approximation. Muotoilemme ja todistamme ensimm\u00e4isten lukujen v\u00e4itteet, osittain eri oletuksin. \nMarkovin ketju BSDE:iden m\u00e4\u00e4rittely\u00e4 varten tarvitsemme sopivan yleist\u00e4 stokastisen integroinnin ja Markovin prosessien teoriaa. Annamme tarvittavat esitiedot todenn\u00e4k\u00f6isyysteoriasta ja integroinnin teoriasta. Esittelemme martingaalien teoriaa, jotta voimme m\u00e4\u00e4ritell\u00e4 stokastisen integraalin semimartingaalien suhteen.\nTodistamme olemassaolon ja yksik\u00e4sitteisyyden Markovin ketju BSDE:iden ratkaisulle. Todistus mukailee vastaavaa Brownin liikkeen tapausta. Tutkimme my\u00f6s erityistapausta, jossa Markovin ketju BSDE:iden ensimm\u00e4isen asteen termin kerroinfunktio on deterministinen Markovin ketjun ja varannon funktio. Osoitamme, ett\u00e4 t\u00e4ll\u00f6in varanto on deterministinen Markovin ketjun funktio. Todistamme, ett\u00e4 t\u00e4ss\u00e4 tapauksessa varanto toteuttaa ep\u00e4lineaarisen Thielen yht\u00e4l\u00f6n.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis we introduce Markov chain backward stochastic differential equations (BSDE), in aim to let us model insurance policies with payments dependent on the policy reserve. We prove the existence and uniqueness of a\nsolution to the BSDEs. In the case of a deterministic driver for the BSDE, we prove that the modeled reserve is a solution to a nonlinear Thiele equation. For our main results we follow the article Nonlinear reserving in life insurance:\nAggregation and mean-field approximation by Boualem Djehiche and Bj\u00f6rn L\u00f6fdahl.\nTo define Markov chain BSDEs and prove our main results, we need suitably general theory of stochastic integration and Markov processes. After preliminary results, we define the stochastic integral with respect to semimartingales. Then we introduce Markov processes to study the model of the insurance policy.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2022-08-01T05:20:31Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-08-01T05:20:31Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "51", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "stochastic differential equations", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "probability theory", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "stochastic calculus", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Markov chain backward stochastic differential equations in modeling insurance policy", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202208013976", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Matematiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Markovin ketjut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stokastiset prosessit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matematiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "vakuutusmatematiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Markov chains", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stochastic processes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mathematics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "insurance mathematics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_82420
language eng
last_indexed 2025-03-31T20:02:07Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/db325f88-38a8-4ada-9e8d-742e9aec0096\/download","text":"URN:NBN:fi:jyu-202208013976.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Hänninen, Henri Markov chain backward stochastic differential equations in modeling insurance policy stochastic differential equations probability theory stochastic calculus Matematiikka Mathematics 4041 Markovin ketjut stokastiset prosessit matematiikka vakuutusmatematiikka Markov chains stochastic processes mathematics insurance mathematics
title Markov chain backward stochastic differential equations in modeling insurance policy
title_full Markov chain backward stochastic differential equations in modeling insurance policy
title_fullStr Markov chain backward stochastic differential equations in modeling insurance policy Markov chain backward stochastic differential equations in modeling insurance policy
title_full_unstemmed Markov chain backward stochastic differential equations in modeling insurance policy Markov chain backward stochastic differential equations in modeling insurance policy
title_short Markov chain backward stochastic differential equations in modeling insurance policy
title_sort markov chain backward stochastic differential equations in modeling insurance policy
title_txtP Markov chain backward stochastic differential equations in modeling insurance policy
topic stochastic differential equations probability theory stochastic calculus Matematiikka Mathematics 4041 Markovin ketjut stokastiset prosessit matematiikka vakuutusmatematiikka Markov chains stochastic processes mathematics insurance mathematics
topic_facet 4041 Markov chains Markovin ketjut Matematiikka Mathematics insurance mathematics matematiikka mathematics probability theory stochastic calculus stochastic differential equations stochastic processes stokastiset prosessit vakuutusmatematiikka
url https://jyx.jyu.fi/handle/123456789/82420 http://www.urn.fi/URN:NBN:fi:jyu-202208013976
work_keys_str_mv AT hänninenhenri markovchainbackwardstochasticdifferentialequationsinmodelinginsurancepolicy