Carbon nanotube memory devices with high-κ gate dielectrics

In this thesis the memory effect and negative differential resistance (NDR) rising from the hysteresis present in carbon nanotube field-effect transistors (CNT-FETs) with high-κ gate dielectrics is discussed. A high-yield fabrication method is devel- oped where Hf-based gate dielectrics are used t...

Full description

Bibliographic Details
Main Author: Rinkiö, Marcus
Other Authors: Faculty of Mathematics and Science, Matemaattis-luonnontieteellinen tiedekunta, University of Jyväskylä, Jyväskylän yliopisto
Format: Doctoral dissertation
Language:eng
Published: 2009
Online Access: https://jyx.jyu.fi/handle/123456789/80377
_version_ 1826225505210204160
author Rinkiö, Marcus
author2 Faculty of Mathematics and Science Matemaattis-luonnontieteellinen tiedekunta University of Jyväskylä Jyväskylän yliopisto
author_facet Rinkiö, Marcus Faculty of Mathematics and Science Matemaattis-luonnontieteellinen tiedekunta University of Jyväskylä Jyväskylän yliopisto Rinkiö, Marcus Faculty of Mathematics and Science Matemaattis-luonnontieteellinen tiedekunta University of Jyväskylä Jyväskylän yliopisto
author_sort Rinkiö, Marcus
datasource_str_mv jyx
description In this thesis the memory effect and negative differential resistance (NDR) rising from the hysteresis present in carbon nanotube field-effect transistors (CNT-FETs) with high-κ gate dielectrics is discussed. A high-yield fabrication method is devel- oped where Hf-based gate dielectrics are used to control the memory effect by de- signing the gate dielectric in nm-thin layers. The first CNT-FETs with consistent and narrow distribution memory effects in their transfer characteristics are achieved, by using atomic layer depositions of HfO2 and TiO2 in a triple-layer configuration. The effect of humidity on the hysteresis of the triple-layer gate dielectric is found to be smaller than in CNT-FETs having the more common SiO2 gate dielectric. As a figure of merit, a 100 ns Write/Erase speed is achieved with CNT-FET memory elements having HfO2 as a gate and passivation dielectric. This speed is high enough to compete with state of the art commercial Flash memories. Also the endurance of the memory elements is shown to exceed 104 cycles. A model where the hafnium oxide has defect states situated above, but close in energy to, the band gap of the CNT is discussed. The fast and effective charging and discharging of the defects is shown to be a likely explanation to the 100 ns operation speed, largely exceeding the CNT-FET memory speeds of 10 ms observed earlier. By patterning the triple-layer high-κ gate oxide, quantum dots can be induced into the channel of CNT-FETs. This in turn is used to attain controllable and gate- tunable NDR in these devices. The method is fully scalable and opens up a new avenue for electronic nanoscale devices using NDR in their operation, e.g. nanoscale amplifiers, fast switching elements and high-frequency oscillators operating in the THz domain. All the above findings indicate strong charge trapping in the Hf-based gate dielectrics, which can be utilized in many ways by carefully designing the gate dielectric to suit the application.
first_indexed 2024-09-11T08:50:58Z
format Väitöskirja
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Rinki\u00f6, Marcus", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-03-25T12:36:27Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-03-25T12:36:27Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2009", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.isbn", "value": "978-951-39-3720-1", "language": null, "element": "identifier", "qualifier": "isbn", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/80377", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis the memory effect and negative differential resistance (NDR) rising\r\nfrom the hysteresis present in carbon nanotube \ufb01eld-effect transistors (CNT-FETs)\r\nwith high-\u03ba gate dielectrics is discussed. A high-yield fabrication method is devel-\r\noped where Hf-based gate dielectrics are used to control the memory effect by de-\r\nsigning the gate dielectric in nm-thin layers. The \ufb01rst CNT-FETs with consistent and\r\nnarrow distribution memory effects in their transfer characteristics are achieved, by\r\nusing atomic layer depositions of HfO2 and TiO2 in a triple-layer con\ufb01guration. The\r\neffect of humidity on the hysteresis of the triple-layer gate dielectric is found to be\r\nsmaller than in CNT-FETs having the more common SiO2 gate dielectric.\r\nAs a \ufb01gure of merit, a 100 ns Write/Erase speed is achieved with CNT-FET\r\nmemory elements having HfO2 as a gate and passivation dielectric. This speed is\r\nhigh enough to compete with state of the art commercial Flash memories. Also the\r\nendurance of the memory elements is shown to exceed 104 cycles. A model where\r\nthe hafnium oxide has defect states situated above, but close in energy to, the band\r\ngap of the CNT is discussed. The fast and effective charging and discharging of the\r\ndefects is shown to be a likely explanation to the 100 ns operation speed, largely\r\nexceeding the CNT-FET memory speeds of 10 ms observed earlier.\r\nBy patterning the triple-layer high-\u03ba gate oxide, quantum dots can be induced\r\ninto the channel of CNT-FETs. This in turn is used to attain controllable and gate-\r\ntunable NDR in these devices. The method is fully scalable and opens up a new\r\navenue for electronic nanoscale devices using NDR in their operation, e.g. nanoscale\r\nampli\ufb01ers, fast switching elements and high-frequency oscillators operating in the\r\nTHz domain. All the above \ufb01ndings indicate strong charge trapping in the Hf-based\r\ngate dielectrics, which can be utilized in many ways by carefully designing the gate\r\ndielectric to suit the application.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-03-25T12:36:27Z\r\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-03-25T12:36:27Z (GMT). No. of bitstreams: 0\r\n Previous issue date: 2009", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.publisher", "value": "University of Jyv\u00e4skyl\u00e4", "language": "", "element": "publisher", "qualifier": null, "schema": "dc"}, {"key": "dc.relation.ispartofseries", "value": "Jyv\u00e4skyl\u00e4n yliopisto. Fysiikan laitos. Research report", "language": null, "element": "relation", "qualifier": "ispartofseries", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli I:</b> Zavodchikova, M., Johansson, A., Rinki\u00f6, M., Toppari, J., Nasibulin, A., Kauppinen, E., & T\u00f6rm\u00e4, P. (2007). Fabrication of carbon nanotube-based field-effect transistors for studies of their memory effects. <i>Physica Status Solidi (b), 244, 4188.</i> DOI: <a href=\"https://doi.org/10.1002/pssb.200776187\"target=\"_blank\"> 10.1002/pssb.200776187</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli II:</b> Rinki\u00f6, M., Zavodchikova, M., T\u00f6rm\u00e4, P., & Johansson, A. (2008). Effect of humidity on the hysteresis of single walled carbon nanotube field effect transistors. <i>Physica Status Solidi B, (245), 2315.</i> DOI: <a href=\"https://doi.org/10.1002/pssb.200879596\"target=\"_blank\"> 10.1002/pssb.200879596</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli III:</b> Rinki\u00f6, M., Johansson, A., Zavodchikova, M., Toppari, J., Nasibulin, A. G., Kauppinen, E., & T\u00f6rm\u00e4, P. (2008). High-yield of memory elements from carbon nanotube field-efect transistors with atomic layer deposited gate dielectric. <i>New Journal of Physics, (10), 103019.</i>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli IV:</b> Rinki\u00f6, M., Johansson, A., Paraoanu, G., & T\u00f6rm\u00e4, P. (2009). High-Speed Memory from Carbon Nanotube Field-Effect Transistors with High-kappa Gate Dielectric. <i>Nano Lett., (9), 643.</i> DOI: <a href=\"https://doi.org/10.1021/nl8029916\"target=\"_blank\"> 10.1021/nl8029916</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli V:</b> Rinki\u00f6, M., Johansson, A., Kotim\u00e4ki, V., & T\u00f6rm\u00e4, P.(2010. Negative Differential Resistance in Carbon Nanotube Field-Effect Transistors with Patterned Gate Oxide. <i>ACS Nano 4, 6, 3356\u20133362.</i> DOI: <a href=\"https://doi.org/10.1021/nn100208v\"target=\"_blank\"> 10.1021/nn100208v </a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Carbon nanotube memory devices with high-\u03ba gate dielectrics", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "doctoral thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:ISBN:978-951-39-3720-1", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "V\u00e4it\u00f6skirja", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Doctoral dissertation", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Mathematics and Science", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_db06", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.relation.issn", "value": "0075-465X", "language": null, "element": "relation", "qualifier": "issn", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "doctoralThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_80377
language eng
last_indexed 2025-02-18T10:56:34Z
main_date 2009-01-01T00:00:00Z
main_date_str 2009
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/20e688f6-03be-4c70-87d1-bd41212b89bc\/download","text":"marcus-rinkio.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2009
record_format qdc
source_str_mv jyx
spellingShingle Rinkiö, Marcus Carbon nanotube memory devices with high-κ gate dielectrics
title Carbon nanotube memory devices with high-κ gate dielectrics
title_full Carbon nanotube memory devices with high-κ gate dielectrics
title_fullStr Carbon nanotube memory devices with high-κ gate dielectrics Carbon nanotube memory devices with high-κ gate dielectrics
title_full_unstemmed Carbon nanotube memory devices with high-κ gate dielectrics Carbon nanotube memory devices with high-κ gate dielectrics
title_short Carbon nanotube memory devices with high-κ gate dielectrics
title_sort carbon nanotube memory devices with high κ gate dielectrics
title_txtP Carbon nanotube memory devices with high-κ gate dielectrics
url https://jyx.jyu.fi/handle/123456789/80377 http://www.urn.fi/URN:ISBN:978-951-39-3720-1
work_keys_str_mv AT rinkiömarcus carbonnanotubememorydeviceswithhighkgatedielectrics