Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays

Viime aikoina on julkaistu useita tekoälymalleja COVID-19 diagnosoimiseen keuhkoröntgenkuvista. Valitettavasti useiden arvioiden perusteella niissä on ongelmia jotka tekevät ne käyttökelvottomiksi kliinisessä työssä. Tässä työssä on kerätty eri lähteistä tietoa siitä mitä tekoälymallilta vaaditaan j...

Full description

Bibliographic Details
Main Author: Kalliokoski, Tuomo
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/80093
_version_ 1826225687832297472
author Kalliokoski, Tuomo
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kalliokoski, Tuomo Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kalliokoski, Tuomo Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kalliokoski, Tuomo
datasource_str_mv jyx
description Viime aikoina on julkaistu useita tekoälymalleja COVID-19 diagnosoimiseen keuhkoröntgenkuvista. Valitettavasti useiden arvioiden perusteella niissä on ongelmia jotka tekevät ne käyttökelvottomiksi kliinisessä työssä. Tässä työssä on kerätty eri lähteistä tietoa siitä mitä tekoälymallilta vaaditaan jotta sitä voi käyttää diagnosoimiseen. Tärkeimmät vaatimukset ovat tuloksen selitettävyys, käytetyn datan vääristymien korjaaminen (esimerkiksi ikäjakaumat voivat olla hyvin erilaiset eri lähteissä), tarkka dokumentaatio prosessista ja perinpohjainen tilastollinen analyysi mallin toimivuudesta. Työn heikkoutena voidaan pitää käytettyjen metodien rajoittumista aikaisempien julkaisujen tutkimiseen ja sitä että käytössä ei ollut lääketieteellistä asiantuntemusta. Mahdolliset lisävaatimukset eivät kuitenkaan kumoa tässä työssä löydettyjä vaatimuksia. There has been multiple publications with artificial intelligence (AI) models for COVID-19 diagnosis using chest X-ray images. Unfortunately according to multiple reviews the suggested models have issues making them unusable for clinical application. This work has collected the requirements for a diagnostic AI model using various sources. The most important requirements are: explainability, bias corrections (for example age distribution can have significant differences between datasets), precise documentation and thorough statistical analysis of the performance of the proposed model. The main weaknesses in this work are the choice of methods used, as they are limited to study of previous publications, and lack of available clinical expertise. This is not critical issue as possible additional requirements will not be in conflict with the requirements found in this work.
first_indexed 2024-09-11T08:52:57Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Saarela, Mirka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kalliokoski, Tuomo", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-03-14T07:55:02Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-03-14T07:55:02Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/80093", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Viime aikoina on julkaistu useita teko\u00e4lymalleja COVID-19 diagnosoimiseen keuhkor\u00f6ntgenkuvista. Valitettavasti useiden arvioiden perusteella niiss\u00e4 on ongelmia jotka tekev\u00e4t ne k\u00e4ytt\u00f6kelvottomiksi kliinisess\u00e4 ty\u00f6ss\u00e4. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 on ker\u00e4tty eri l\u00e4hteist\u00e4 tietoa siit\u00e4 mit\u00e4 teko\u00e4lymallilta vaaditaan jotta sit\u00e4 voi k\u00e4ytt\u00e4\u00e4 diagnosoimiseen. \nT\u00e4rkeimm\u00e4t vaatimukset ovat tuloksen selitett\u00e4vyys, k\u00e4ytetyn datan v\u00e4\u00e4ristymien korjaaminen (esimerkiksi ik\u00e4jakaumat voivat olla hyvin erilaiset eri l\u00e4hteiss\u00e4), tarkka dokumentaatio prosessista ja perinpohjainen tilastollinen analyysi mallin toimivuudesta.\nTy\u00f6n heikkoutena voidaan pit\u00e4\u00e4 k\u00e4ytettyjen metodien rajoittumista aikaisempien julkaisujen tutkimiseen ja sit\u00e4 ett\u00e4 k\u00e4yt\u00f6ss\u00e4 ei ollut l\u00e4\u00e4ketieteellist\u00e4 asiantuntemusta. Mahdolliset lis\u00e4vaatimukset eiv\u00e4t kuitenkaan kumoa t\u00e4ss\u00e4 ty\u00f6ss\u00e4 l\u00f6ydettyj\u00e4 vaatimuksia.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "There has been multiple publications with artificial intelligence (AI) models for COVID-19 diagnosis using chest X-ray images. Unfortunately according to multiple reviews the suggested models have issues making them unusable for clinical application. This work has collected the requirements for a diagnostic AI model using various sources. The most important requirements are: explainability, bias corrections (for example age distribution can have significant differences between datasets), precise documentation and thorough statistical analysis of the performance of the proposed model.\nThe main weaknesses in this work are the choice of methods used, as they are limited to study of previous publications, and lack of available clinical expertise. This is not critical issue as possible additional requirements will not be in conflict with the requirements found in this work.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-03-14T07:55:02Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-03-14T07:55:02Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "43", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202203141799", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "l\u00e4\u00e4ketiede", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiologia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "COVID-19", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "diagnoosi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "diagnostiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "medicine (science)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "COVID-19", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "diagnosis", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "diagnostics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/collections/archival-workstation).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_80093
language eng
last_indexed 2025-02-18T10:56:53Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Kalliokoski, Tuomo Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays Tietotekniikka Mathematical Information Technology 602 koneoppiminen tekoäly lääketiede radiologia COVID-19 diagnoosi diagnostiikka machine learning artificial intelligence medicine (science) radiology diagnosis diagnostics
title Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
title_full Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
title_fullStr Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
title_full_unstemmed Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
title_short Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
title_sort requirements for artificial intelligence used for the diagnosis of the covid 19 from chest x rays
title_txtP Requirements for artificial intelligence used for the diagnosis of the COVID-19 from chest X-rays
topic Tietotekniikka Mathematical Information Technology 602 koneoppiminen tekoäly lääketiede radiologia COVID-19 diagnoosi diagnostiikka machine learning artificial intelligence medicine (science) radiology diagnosis diagnostics
topic_facet 602 COVID-19 Mathematical Information Technology Tietotekniikka artificial intelligence diagnoosi diagnosis diagnostics diagnostiikka koneoppiminen lääketiede machine learning medicine (science) radiologia radiology tekoäly
url https://jyx.jyu.fi/handle/123456789/80093 http://www.urn.fi/URN:NBN:fi:jyu-202203141799
work_keys_str_mv AT kalliokoskituomo requirementsforartificialintelligenceusedforthediagnosisofthecovid19fromchestxr