Hierarkkinen Bayes-malli tunnelin vaurioiden ennustamiseen

Ennakoiva kunnossapito säästää aikaa ja rahaa. Tässä työssä sovitetaan kallioon louhitun tunnelin vaurioaineistoon hierarkkinen Bayes-malli, jolla vaurioiden kehittymistä voi ennustaa. Ennusteiden avulla kunnossapitoa voi kohdentaa tarvealueille ennakoivasti ja ehjäksi ennustetuilla alueilla tarkast...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Julkunen, Teemu
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:fin
Julkaistu: 2021
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/79017
Kuvaus
Yhteenveto:Ennakoiva kunnossapito säästää aikaa ja rahaa. Tässä työssä sovitetaan kallioon louhitun tunnelin vaurioaineistoon hierarkkinen Bayes-malli, jolla vaurioiden kehittymistä voi ennustaa. Ennusteiden avulla kunnossapitoa voi kohdentaa tarvealueille ennakoivasti ja ehjäksi ennustetuilla alueilla tarkastusväliä voi harventaa. Aineistona tässä työssä käytetään käytetyn ydinpolttoaineen loppusijoituslaitoksen ONKALO®n ajotunnelin vaurioita, joita on kerätty vuosina 2016--2020. Yleisesti tunnelissa voi esiintyä useita eri vauriotyyppejä. Valittu hierarkkinen Bayes-malli huomioi spatiaalisen riippuvuuden lisäksi myös vauriotyyppien väliset riippuvuudet satunnaisvaikutusten korreloituneisuudella. Ajallinen kehitys puolestaan mallinnetaan satunnaisvaikutusten odotusarvon kautta autoregressiivisesti. Bayesiläinen lähestymistapa mallintamisessa mahdollistaa mallin sovituksen, vaikka aineistossa on puuttuvaa tietoa, kunhan tietyt edellytykset ovat voimassa.