Recommending next store visit for new customers in large shopping malls

Nowadays widespread availability of complimentary WI-FI inside large shopping malls and the increasing precision of WI-FI positioning systems make it possible to track a customer’s trajectory inside shopping malls via their mobile devices. This trajectory data open the door for many useful applicati...

Full description

Bibliographic Details
Main Author: Kurt, Özgür
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/78965
_version_ 1826225748243906560
author Kurt, Özgür
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kurt, Özgür Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kurt, Özgür Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kurt, Özgür
datasource_str_mv jyx
description Nowadays widespread availability of complimentary WI-FI inside large shopping malls and the increasing precision of WI-FI positioning systems make it possible to track a customer’s trajectory inside shopping malls via their mobile devices. This trajectory data open the door for many useful applications that can help both customers and store owners. This study presents an application aimed for new customers of a large shopping mall, who are not familiar with the layout and available stores inside, to navigate the mall more effectively. To achieve this, we first find common customer intents (store visit patterns) inside the mall, and then fit a newly arrived customer’s intent to one of these common intents. After finding possible intents for a customer, we use the movement patterns for available intents to produce a next-store recommendation for the customer. Fuzzy c-means clustering technique will be used to find intents from customer trajectories. All customer visits belonging to these intents will be processed as sequential trajectory steps. These sequential steps are enriched with some other peripheral information related to day, time, duration, and then are fed into a neural network architecture consisting of RNN and Dense layers to model the movement patterns related to intents. Results of this model will provide recommendations to new-coming customers for their next store visit. Finally, using a set of real life trajectory data, predictions from the model will be presented and interpreted.
first_indexed 2021-12-14T21:00:26Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Khriyenko, Oleksiy", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kurt, \u00d6zg\u00fcr", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-12-14T08:15:02Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-12-14T08:15:02Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/78965", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Nowadays widespread availability of complimentary WI-FI inside large shopping malls and the increasing precision of WI-FI positioning systems make it possible to track a customer\u2019s trajectory inside shopping malls via their mobile devices. This trajectory data open the door for many useful applications that can help both customers and store owners. This study presents an application aimed for new customers of a large shopping mall, who are not familiar with the layout and available stores inside, to navigate the mall more effectively. To achieve this, we first find common customer intents (store visit patterns) inside the mall, and then fit a newly arrived customer\u2019s intent to one of these common intents. After finding possible intents for a customer, we use the movement patterns for available intents to produce a next-store recommendation for the customer. Fuzzy c-means clustering technique will be used to find intents from customer trajectories. All customer visits belonging to these intents will be processed as sequential trajectory steps. These sequential steps are enriched with some other peripheral information related to day, time, duration, and then are fed into a neural network architecture consisting of RNN and Dense layers to model the movement patterns related to intents. Results of this model will provide recommendations to new-coming customers for their next store visit. Finally, using a set of real life trajectory data, predictions from the model will be presented and interpreted.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-12-14T08:15:02Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-12-14T08:15:02Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "61", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "trajectory patterns", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "fuzzy clustering", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "RNN", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Recommending next store visit for new customers in large shopping malls", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202112145952", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "student", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ostoskeskukset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonlouhinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "shopping malls", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data mining", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_78965
language eng
last_indexed 2025-02-18T10:55:04Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/ccaa4b6a-d5ee-4ea2-98c7-6ec6ace4e056\/download","text":"URN:NBN:fi:jyu-202112145952.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Kurt, Özgür Recommending next store visit for new customers in large shopping malls trajectory patterns fuzzy clustering RNN Tietotekniikka Mathematical Information Technology 602 ostoskeskukset koneoppiminen neuroverkot tiedonlouhinta tekoäly shopping malls machine learning neural networks (information technology) data mining artificial intelligence
title Recommending next store visit for new customers in large shopping malls
title_full Recommending next store visit for new customers in large shopping malls
title_fullStr Recommending next store visit for new customers in large shopping malls Recommending next store visit for new customers in large shopping malls
title_full_unstemmed Recommending next store visit for new customers in large shopping malls Recommending next store visit for new customers in large shopping malls
title_short Recommending next store visit for new customers in large shopping malls
title_sort recommending next store visit for new customers in large shopping malls
title_txtP Recommending next store visit for new customers in large shopping malls
topic trajectory patterns fuzzy clustering RNN Tietotekniikka Mathematical Information Technology 602 ostoskeskukset koneoppiminen neuroverkot tiedonlouhinta tekoäly shopping malls machine learning neural networks (information technology) data mining artificial intelligence
topic_facet 602 Mathematical Information Technology RNN Tietotekniikka artificial intelligence data mining fuzzy clustering koneoppiminen machine learning neural networks (information technology) neuroverkot ostoskeskukset shopping malls tekoäly tiedonlouhinta trajectory patterns
url https://jyx.jyu.fi/handle/123456789/78965 http://www.urn.fi/URN:NBN:fi:jyu-202112145952
work_keys_str_mv AT kurtözgur recommendingnextstorevisitfornewcustomersinlargeshoppingmalls