Matriisin Jordanin muoto

Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. Matriisin Jordanin muoto voidaan saada vähintään kaksi eri tavalla. Tässä t...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Artemenko, Maryia
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:fin
Julkaistu: 2020
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/75886
_version_ 1828193078529228800
author Artemenko, Maryia
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Artemenko, Maryia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Artemenko, Maryia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Artemenko, Maryia
datasource_str_mv jyx
description Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. Matriisin Jordanin muoto voidaan saada vähintään kaksi eri tavalla. Tässä työssä pohditaan matriisin Jordanin muotoa käyttämällä pohjimmillaan algebrallisia käsitteitä ja keinoja. Keskeinen työn käsite on polynomimatriisi. Polynomimatriisin peruslaskutoimitukset ja alkeismuunnokset voidaan määritellä vastaavasti kuin tavallisille matriisille. Lisäksi jokainen polynomimatriisi ekvivalentti diagonaalimatriisille, jonka lävistäjäalkiot ovat polynomimatriisin invariantit polynomit. Tämä diagonaalipolynomimatriisi kutsutaan polynomimatriisin Smithin normaalimuodoksi. Matriisin Jordanin muodon rakentamisessa käytetään alkeistekijän käsite. Alkeistekijät löytyy aina kun invarianttien polynomien kertoimet ovat algebrallisesti suljetun kunnan alkioita. Tämän kuntan esimerkkinä voi olla kompleksilukujen joukko. Tutkielma jakaantuu kolmeen osaan. Ensimmäinen osa sisältää lineaarialgebran peruskäsitteitä sekä polynomin käsite ja polynomien jakoalgoritmi. Toinen osa sisältää matriisiteorian peruskäsitteitä ja esitietoja kuten matriisin määritelmä ja tyyppejä, laskutoimituksia matriisien välillä, matriisin determinantti, ominaisarvoteorian peruskäsitteitä jne. Tutkielman kolmannessa osassa määritellään matriisin Jordanin muoto ja Jordan hajotelman muodostaminen alkeistekijöiden avulla. Jokainen tutkielman luku sisältää lukuun kuuluvia esimerkkejä ja niiden ratkaisut. This mathematics master’s thesis is covering the Jordan normal form of a matrix. Jordan normal form is close to the diagonal form. It is useful when a matrix is not diagonalisable. Jordan form of a matrix can be attained at least in two different ways. In this paper, the Jordan normal form is derived using algebraic theory. The main concept of this work is the polynomial matrix. The elementary transformations for a polynomial matrix are the same as for any other matrix. In addition to that, every polynomial matrix is equivalent to a diagonal matrix whose diagonal elements are the invariant polynomials of a polynomial matrix. This kind of diagonal polynomial matrix is called the Smith normal form. The elementary factor is introduced in order to construct the Jordan normal form. The elementary factor can always be found if the coefficients of the invariant polynomial are the elements of an algebraically closed field. It can be for example the set of complex numbers. The thesis consists of three parts. The first part contains the basics of linear algebra, polynomials and the algorithm for the polynomial division. The second parts consists of the basics of the matrix theory, such as the matrix definition and types, operations between matrices, matrix determinant, basic concepts of the eigenvalue theory, etc. The Jordan normal form and the Jordan decomposition using elementary factors is defined in the third part. Each chapter of the thesis contains examples and solutions.
first_indexed 2024-09-11T08:52:26Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Lehtonen, Ari", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Artemenko, Maryia", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-05-24T09:39:55Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-05-24T09:39:55Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/75886", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4 matematiikan pro gradu -tutkielma k\u00e4sittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on l\u00e4hemp\u00e4n\u00e4 diagonaalimuotoa. Se on hy\u00f6dyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. Matriisin Jordanin muoto voidaan saada v\u00e4hint\u00e4\u00e4n kaksi eri tavalla. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 pohditaan matriisin Jordanin muotoa k\u00e4ytt\u00e4m\u00e4ll\u00e4 pohjimmillaan algebrallisia k\u00e4sitteit\u00e4 ja keinoja. Keskeinen ty\u00f6n k\u00e4site on polynomimatriisi. Polynomimatriisin peruslaskutoimitukset ja alkeismuunnokset voidaan m\u00e4\u00e4ritell\u00e4 vastaavasti kuin tavallisille matriisille. Lis\u00e4ksi jokainen polynomimatriisi ekvivalentti diagonaalimatriisille, jonka l\u00e4vist\u00e4j\u00e4alkiot ovat polynomimatriisin invariantit polynomit. T\u00e4m\u00e4 diagonaalipolynomimatriisi kutsutaan polynomimatriisin Smithin normaalimuodoksi. Matriisin Jordanin muodon rakentamisessa k\u00e4ytet\u00e4\u00e4n alkeistekij\u00e4n k\u00e4site. Alkeistekij\u00e4t l\u00f6ytyy aina kun invarianttien polynomien kertoimet ovat algebrallisesti suljetun kunnan alkioita. T\u00e4m\u00e4n kuntan esimerkkin\u00e4 voi olla kompleksilukujen joukko. \n\n Tutkielma jakaantuu kolmeen osaan. Ensimm\u00e4inen osa sis\u00e4lt\u00e4\u00e4 lineaarialgebran perusk\u00e4sitteit\u00e4 sek\u00e4 polynomin k\u00e4site ja polynomien jakoalgoritmi. Toinen osa sis\u00e4lt\u00e4\u00e4 matriisiteorian perusk\u00e4sitteit\u00e4 ja esitietoja kuten matriisin m\u00e4\u00e4ritelm\u00e4 ja tyyppej\u00e4, laskutoimituksia matriisien v\u00e4lill\u00e4, matriisin determinantti, ominaisarvoteorian perusk\u00e4sitteit\u00e4 jne. Tutkielman kolmannessa osassa m\u00e4\u00e4ritell\u00e4\u00e4n matriisin Jordanin muoto ja Jordan hajotelman muodostaminen alkeistekij\u00f6iden avulla. Jokainen tutkielman luku sis\u00e4lt\u00e4\u00e4 lukuun kuuluvia esimerkkej\u00e4 ja niiden ratkaisut.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This mathematics master\u2019s thesis is covering the Jordan normal form of a matrix. Jordan normal form is close to the diagonal form. It is useful when a matrix is not diagonalisable. Jordan form of a matrix can be attained at least in two different ways. In this paper, the Jordan normal form is derived using algebraic theory. The main concept of this work is the polynomial matrix. The elementary transformations for a polynomial matrix are the same as for any other matrix. In addition to that, every polynomial matrix is equivalent to a diagonal matrix whose diagonal elements are the invariant polynomials of a polynomial matrix. This kind of diagonal polynomial matrix is called the Smith normal form. The elementary factor is introduced in order to construct the Jordan normal form. The elementary factor can always be found if the coefficients of the invariant polynomial are the elements of an algebraically closed field. It can be for example the set of complex numbers. \n\nThe thesis consists of three parts. The first part contains the basics of linear algebra, polynomials and the algorithm for the polynomial division. The second parts consists of the basics of the matrix theory, such as the matrix definition and types, operations between matrices, matrix determinant, basic concepts of the eigenvalue theory, etc. The Jordan normal form and the Jordan decomposition using elementary factors is defined in the third part. Each chapter of the thesis contains examples and solutions.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-05-24T09:39:55Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-05-24T09:39:55Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "78", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Jordanin muoto", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "polynomimatriisi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "minimipolynomi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "invariantit polynomit", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "alkeistekij\u00e4t", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Matriisin Jordanin muoto", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202105243145", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Matematiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matriisit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matematiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "polynomit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matriisilaskenta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lineaarialgebra", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_75886
language fin
last_indexed 2025-03-31T20:03:29Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/20571e1a-386a-4f56-a91b-fb2f9d46face\/download","text":"URN:NBN:fi:jyu-202105243145.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Artemenko, Maryia Matriisin Jordanin muoto Jordanin muoto polynomimatriisi minimipolynomi invariantit polynomit alkeistekijät Matematiikka Mathematics 4041 matriisit matematiikka polynomit matriisilaskenta lineaarialgebra
title Matriisin Jordanin muoto
title_full Matriisin Jordanin muoto
title_fullStr Matriisin Jordanin muoto Matriisin Jordanin muoto
title_full_unstemmed Matriisin Jordanin muoto Matriisin Jordanin muoto
title_short Matriisin Jordanin muoto
title_sort matriisin jordanin muoto
title_txtP Matriisin Jordanin muoto
topic Jordanin muoto polynomimatriisi minimipolynomi invariantit polynomit alkeistekijät Matematiikka Mathematics 4041 matriisit matematiikka polynomit matriisilaskenta lineaarialgebra
topic_facet 4041 Jordanin muoto Matematiikka Mathematics alkeistekijät invariantit polynomit lineaarialgebra matematiikka matriisilaskenta matriisit minimipolynomi polynomimatriisi polynomit
url https://jyx.jyu.fi/handle/123456789/75886 http://www.urn.fi/URN:NBN:fi:jyu-202105243145
work_keys_str_mv AT artemenkomaryia matriisinjordaninmuoto