Hilbertin avaruudet ja kompaktit operaattorit

Tässä työssä tutkitaan Hilbertin avaruuksia, kompakteja operaattoreita Hilbertin avaruuksissa ja sitä, miten kompaktien operaattoreiden avulla on mahdollista muodostaa kanta Hilbertin avaruudelle. Kompakteilla operaattoreilla tarkoitetaan rajoitettuja lineaarikuvauksia, jotka kuvaavat jokaisen rajoi...

Full description

Bibliographic Details
Main Author: Pajala, Topi
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/72574
Description
Summary:Tässä työssä tutkitaan Hilbertin avaruuksia, kompakteja operaattoreita Hilbertin avaruuksissa ja sitä, miten kompaktien operaattoreiden avulla on mahdollista muodostaa kanta Hilbertin avaruudelle. Kompakteilla operaattoreilla tarkoitetaan rajoitettuja lineaarikuvauksia, jotka kuvaavat jokaisen rajoitetun jonon sellaiseksi, että sen kuvajoukosta löytyy osajono, joka suppenee. Tavallisesti äärellisulotteiselle sisätuloavaruudelle saadaan muodostettua kanta Hermiten operaattoreiden avulla, mutta ääretönulotteisen Hilbertin avaruuden tapauksessa lähes täysin vastaava teoria löytyy kompakteista operaattoreista. Pääasiassa Hilbertin avaruuden kannan löytämiseksi riittää löytää kompakti operaattori avaruudesta, jolloin kannan muodostavat ne avaruuden alkiot, jotka operaattori kuvaa samaksi alkioksi jollain reaaliluvulla kerrottuna. Tutkielma koostuu neljästä osasta, joista ensimmäisessä tutustutaan Hilbertin avaruuteen ja sen rakenteeseen, toisessa osassa tutkitaan kompakteja operaattoreita yleisessä Hilbertin avaruudessa ja osoitetaan, että yleiselle Hilbertin avaruudelle on mahdollista muodostaa kanta kompaktien operaattoreiden avulla. Kolmannessa osassa määritellään Sobolev-avaruudet ja tarkastellaan niiden yhteyttä Hilbertin avaruuksiin ja neljännessä osassa tutkitaan divergenssimuotoisia yhtälöitä erityisesti sellaisissa avaruuksissa jotka ovat sekä Hilbertin avaruuksia, että Sobolev-avaruuksia. Tutkielman päätuloksena osoitetaan, että tiettyjen divergenssimuotoisten yhtälöiden ratkaisut ovat kompakteja operaattoreita ja edelleen näiden avulla on mahdollista muodostaa koko avaruudelle kanta. Lopuksi osoitetaan, että tällä edellä mainitulla menetelmällä on mahdollista ratkaista helposti niin sanottu lämpöyhtälö, joka kuvaa keskimääräistä lämmön jakautumista kappaleessa tietyllä ajanhetkellä.