Riemann surfaces and Teichmüller theory

Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen teoriaa, jota sovelletaan Möbius-kuvauksista koostuviin ryhmiin. Tämän jälkee...

Full description

Bibliographic Details
Main Author: Ikonen, Toni
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2017
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/55839
_version_ 1826225778292948992
author Ikonen, Toni
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics University of Jyväskylä Jyväskylän yliopisto
author_facet Ikonen, Toni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics University of Jyväskylä Jyväskylän yliopisto Ikonen, Toni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics University of Jyväskylä Jyväskylän yliopisto
author_sort Ikonen, Toni
datasource_str_mv jyx
description Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen teoriaa, jota sovelletaan Möbius-kuvauksista koostuviin ryhmiin. Tämän jälkeen kvasikonformaalikuvaukset määritellään Riemannin pinnoille ja niiden yhteyttä yhdesti yhtenäisten Riemannin avaruuksien kvasikonformikuvauksiin tutkitaan. Näitä tietoja sekä yhdesti yhtenäisten Riemannin pintojen uniformisaatiolausetta hyödyntämällä todistetaan yleisten Riemannin pintojen uniformisaatiolause. Tämä tulos liittää pinnat Möbius-kuvauksien toimintoihin yhdesti yhtenäisillä Riemannin pinnoilla. Yleisten Riemannin pintojen uniformaatioteoreema mahdollistaa työssä käytetyt Teichmüllerin avaruuksien määritelmät. Näille avaruuksille annetaan useampi ekvivalentti määritelmä. Tämän jälkeen Teichmüllerin avaruuksiin määritellään teorian kannalta luonnollinen etäisyysfunktio, joka tekee avaruuksista geodeettisen ja täydellisen. Lisäksi osoitetaan että Riemannin pintojen väliset kvasikonformaalikuvaukset indusoivat surjektiivisen isometrian pintojen Teichmüllerin avaruuksien välille. Lopuksi yhdesti yhtenäisten Riemannin pintojen, punkteerattujen kompaktien Riemannin pintojen sekä topologisten sylintereiden Teichmüller-avaruudet karakterisoidaan. Yhdesti yhtenäisistä pinnoista vain hyperbolisella tasolla osoittautuu olevan epätriviaali Teichmüllerin avaruus. Topologisten sylintereiden tapauksessa havaitaan kolme erilaista Teichmüllerin avaruutta, jotka vastaavat punkteerattua tasoa, punkteerattua kiekkoa ja rengasta. The main objective of this work is to develop the necessary tools to define the Teichmüller spaces of Riemann surfaces and study their geometric properties. Firstly, some theory of covering spaces and topological actions will be studied and the results applied to Möbius transformations. Secondly, quasiconformal maps between Riemann surfaces will be defined and they will be characterized using quasiconformal maps between simply-connected Riemann surfaces. These results and the Uniformization Theorem of simply-connected Riemann surfaces will be used to prove a Uniformization Theorem for general Riemann surfaces. Such surfaces will be linked to actions of Möbius transformations on simply-connected Riemann surfaces. The Uniformization Theorem of Riemann surfaces will be used to define Teichmüller spaces. A couple of equivalent definitions will be introduced. After that a natural distance function is defined on Teichmüller spaces which makes them geodesic and complete. It will be shown that quasiconformal maps between Riemann surfaces induce isometries between their Teichmüller spaces. Finally, the Teichmüller spaces of Riemann surfaces that are either simply-connected, punctured compact Riemann surfaces, or topological cylinders will be characterized. In the simply-connected case, only the hyperbolic plane has a non-trivial Teichmüller space. The topological cylinders have three distinct Teichmüller spaces each of which correspond to exactly one of the following: the once-punctured plane, the once-punctured disk, or annuli.
first_indexed 2024-09-11T08:52:56Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Rajala, Kai", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Ikonen, Toni", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2017-11-11T17:52:17Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2017-11-11T17:52:17Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2017", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1738390", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/55839", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Riemannin pinnat ja Teichm\u00fcller-teoriaa.\r\n\r\nT\u00e4m\u00e4n ty\u00f6n p\u00e4\u00e4m\u00e4\u00e4r\u00e4n\u00e4 on m\u00e4\u00e4ritell\u00e4 Riemannin pintojen Teichm\u00fcller-avaruudet sek\u00e4 tutkia niiden geometrisia ominaisuuksia. Ensin ty\u00f6ss\u00e4 kehitet\u00e4\u00e4n peiteavaruuksien ja toimintojen teoriaa, jota sovelletaan M\u00f6bius-kuvauksista koostuviin ryhmiin. T\u00e4m\u00e4n j\u00e4lkeen kvasikonformaalikuvaukset m\u00e4\u00e4ritell\u00e4\u00e4n Riemannin pinnoille ja niiden yhteytt\u00e4 yhdesti yhten\u00e4isten Riemannin avaruuksien kvasikonformikuvauksiin tutkitaan. N\u00e4it\u00e4 tietoja sek\u00e4 yhdesti yhten\u00e4isten Riemannin pintojen uniformisaatiolausetta hy\u00f6dynt\u00e4m\u00e4ll\u00e4 todistetaan yleisten Riemannin pintojen uniformisaatiolause. T\u00e4m\u00e4 tulos liitt\u00e4\u00e4 pinnat M\u00f6bius-kuvauksien toimintoihin yhdesti yhten\u00e4isill\u00e4 Riemannin pinnoilla.\r\n\r\nYleisten Riemannin pintojen uniformaatioteoreema mahdollistaa ty\u00f6ss\u00e4 k\u00e4ytetyt Teichm\u00fcllerin avaruuksien m\u00e4\u00e4ritelm\u00e4t. N\u00e4ille avaruuksille annetaan useampi\r\nekvivalentti m\u00e4\u00e4ritelm\u00e4. T\u00e4m\u00e4n j\u00e4lkeen Teichm\u00fcllerin avaruuksiin m\u00e4\u00e4ritell\u00e4\u00e4n\r\nteorian kannalta luonnollinen et\u00e4isyysfunktio, joka tekee avaruuksista geodeettisen ja t\u00e4ydellisen. Lis\u00e4ksi osoitetaan ett\u00e4 Riemannin pintojen v\u00e4liset kvasikonformaalikuvaukset indusoivat surjektiivisen isometrian pintojen Teichm\u00fcllerin avaruuksien v\u00e4lille. Lopuksi yhdesti yhten\u00e4isten Riemannin pintojen, punkteerattujen kompaktien Riemannin pintojen sek\u00e4 topologisten sylintereiden Teichm\u00fcller-avaruudet karakterisoidaan. Yhdesti yhten\u00e4isist\u00e4 pinnoista vain hyperbolisella tasolla osoittautuu olevan ep\u00e4triviaali Teichm\u00fcllerin avaruus. Topologisten sylintereiden tapauksessa havaitaan kolme erilaista Teichm\u00fcllerin avaruutta, jotka vastaavat punkteerattua tasoa, punkteerattua kiekkoa ja rengasta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The main objective of this work is to develop the necessary tools to define the Teichm\u00fcller spaces of Riemann surfaces and study their geometric properties. Firstly, some theory of covering spaces and topological actions will be studied and the results applied to M\u00f6bius transformations. Secondly, quasiconformal maps between Riemann surfaces will be defined and they will be characterized using quasiconformal maps between simply-connected Riemann surfaces. These results and the Uniformization Theorem of simply-connected Riemann surfaces will be used to prove a Uniformization Theorem for general Riemann surfaces. Such surfaces will be linked to actions of M\u00f6bius transformations on simply-connected Riemann surfaces.\r\n\r\nThe Uniformization Theorem of Riemann surfaces will be used to define Teichm\u00fcller spaces. A couple of equivalent definitions will be introduced. After that a natural distance function is defined on Teichm\u00fcller spaces which makes them geodesic and complete. It will be shown that quasiconformal maps between Riemann surfaces induce isometries between their Teichm\u00fcller spaces. Finally, the Teichm\u00fcller spaces of Riemann surfaces that are either simply-connected, punctured compact Riemann surfaces, or topological cylinders will be characterized. In the simply-connected case, only the hyperbolic plane has a non-trivial Teichm\u00fcller space. The topological cylinders have three distinct Teichm\u00fcller spaces each of which correspond to exactly one of the following: the once-punctured plane, the once-punctured disk, or annuli.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Toni Ikonen (tomaheik) on 2017-11-11 17:52:17.365867. Form: Pro gradu -lomake (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake). JyX data: [jyx_publishing-allowed (fi) =True]", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2017-11-11T17:52:17Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201711114223.pdf: 654993 bytes, checksum: 37253264496abab3942891348f9ff67b (MD5)\r\nlicense.html: 4793 bytes, checksum: 92e1b6340aaf052acc48e306a82a865b (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2017-11-11T17:52:17Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201711114223.pdf: 654993 bytes, checksum: 37253264496abab3942891348f9ff67b (MD5)\r\nlicense.html: 4793 bytes, checksum: 92e1b6340aaf052acc48e306a82a865b (MD5)\r\n Previous issue date: 2017", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto (78 sivua)", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "peiteavaruus", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "peitekuvaus", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "M\u00f6bius-kuvaukset", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Riemannin pinta", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "kvasikonformikuvaus", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Teichmu\u0308llerin avaruus", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Teichmu\u0308llerin metriikka", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "covering space", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "covering map", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "M\u00f6bius transformation", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Riemann surface", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "quasiconformal map", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Teichmu\u0308ller space", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Teichmu\u0308ller metric", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Riemann surfaces and Teichmu\u0308ller theory", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201711114223", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Matematiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2017-11-11T17:52:18Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "funktioteoria", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kompleksifunktiot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_55839
language eng
last_indexed 2025-02-18T10:56:53Z
main_date 2017-01-01T00:00:00Z
main_date_str 2017
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e73dff58-3b83-4eca-8597-12fd05500e57\/download","text":"URN:NBN:fi:jyu-201711114223.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2017
record_format qdc
source_str_mv jyx
spellingShingle Ikonen, Toni Riemann surfaces and Teichmüller theory peiteavaruus peitekuvaus Möbius-kuvaukset Riemannin pinta kvasikonformikuvaus Teichmüllerin avaruus Teichmüllerin metriikka covering space covering map Möbius transformation Riemann surface quasiconformal map Teichmüller space Teichmüller metric Matematiikka Mathematics 4041 funktioteoria kompleksifunktiot
title Riemann surfaces and Teichmüller theory
title_full Riemann surfaces and Teichmüller theory
title_fullStr Riemann surfaces and Teichmüller theory Riemann surfaces and Teichmüller theory
title_full_unstemmed Riemann surfaces and Teichmüller theory Riemann surfaces and Teichmüller theory
title_short Riemann surfaces and Teichmüller theory
title_sort riemann surfaces and teichmu ller theory
title_txtP Riemann surfaces and Teichmüller theory
topic peiteavaruus peitekuvaus Möbius-kuvaukset Riemannin pinta kvasikonformikuvaus Teichmüllerin avaruus Teichmüllerin metriikka covering space covering map Möbius transformation Riemann surface quasiconformal map Teichmüller space Teichmüller metric Matematiikka Mathematics 4041 funktioteoria kompleksifunktiot
topic_facet 4041 Matematiikka Mathematics Möbius transformation Möbius-kuvaukset Riemann surface Riemannin pinta Teichmüller metric Teichmüller space Teichmüllerin avaruus Teichmüllerin metriikka covering map covering space funktioteoria kompleksifunktiot kvasikonformikuvaus peiteavaruus peitekuvaus quasiconformal map
url https://jyx.jyu.fi/handle/123456789/55839 http://www.urn.fi/URN:NBN:fi:jyu-201711114223
work_keys_str_mv AT ikonentoni riemannsurfacesandteichmullertheory