Pintojen perusryhmistä

Tässä tutkielmassa osoitetaan ennestään tunnettu pintoihin liittyvä tulos, jonka mukaan epäkompaktin pinnan perusryhmä on vapaa. Todistus pohjautuu tietoon siitä, että jokaisella pinnalla on olemassa niin sanottu kolmiointi. Pinnan kolmiointia hyödyntäen pinta tyhjennetään sopivilla sisäkkäisillä...

Full description

Bibliographic Details
Main Author: Schultz, Timo
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:fin
Published: 2015
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/48361