Neural networks for computationally expensive problems

Optimointiin tarvitaan usein simulaattoria, jotka voivat olla laskennallisesti raskaita. Simulaattorit voidaan korvata sijaismalleilla, jotka ovat nopeampi laskea ja voivat olla lähes yhtä tarkkoja kuin simulaattorit. Tässä työssä tarkastelemme tarkemmin yhtä sijaismalli, neuroverkkoja. Valmistelemm...

Full description

Bibliographic Details
Main Author: Kokko, Tommi
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Tietotekniikan laitos, Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2013
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/41672
_version_ 1826225699650797568
author Kokko, Tommi
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto
author_facet Kokko, Tommi Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto Kokko, Tommi Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto
author_sort Kokko, Tommi
datasource_str_mv jyx
description Optimointiin tarvitaan usein simulaattoria, jotka voivat olla laskennallisesti raskaita. Simulaattorit voidaan korvata sijaismalleilla, jotka ovat nopeampi laskea ja voivat olla lähes yhtä tarkkoja kuin simulaattorit. Tässä työssä tarkastelemme tarkemmin yhtä sijaismalli, neuroverkkoja. Valmistelemme sijaismalli avusteista optimointia rakentamalla, opettamalla ja validoimalla erilaisia neuroverkkoja sijaismalliksi. Lisäksi vertailemme eri data samplaustekniikoilla generoitujen opetusdatojen vaikutusta neuroverkkojen approksimointitarkkuuteen. Optimization often involves usage of a simulator, which can be computationally expensive to use. Simulators can be replaced by surrogate models, which are computationally cheaper and can be almost as accurate as the simulators. In this thesis we consider closer a surrogate model, namely neural networks. We prepare surrogate assisted optimization by building, training and validating different neural network models for a surrogate model. In addition we compare how different training data sets, which are generated by different data sampling techniques, effect the generalization accuracy of neural networks.
first_indexed 2023-03-22T09:59:47Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Kokko, Tommi", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1268743", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/41672", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Optimointiin tarvitaan usein simulaattoria, jotka voivat olla laskennallisesti raskaita. Simulaattorit voidaan korvata sijaismalleilla, jotka ovat nopeampi laskea ja voivat olla l\u00e4hes yht\u00e4 tarkkoja kuin simulaattorit. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 tarkastelemme tarkemmin yht\u00e4 sijaismalli, neuroverkkoja. Valmistelemme sijaismalli avusteista optimointia rakentamalla, opettamalla ja validoimalla erilaisia neuroverkkoja sijaismalliksi. Lis\u00e4ksi vertailemme eri data samplaustekniikoilla generoitujen opetusdatojen vaikutusta neuroverkkojen approksimointitarkkuuteen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Optimization often involves usage of a simulator, which can be computationally expensive to use. Simulators can be replaced by surrogate models, which are computationally cheaper and can be almost as accurate as the simulators. In this thesis we consider closer a surrogate model, namely neural networks. We prepare surrogate assisted optimization by building, training and validating different neural network models for a surrogate model. In addition we compare how different training data sets, which are generated by different data sampling techniques, effect the generalization accuracy of neural networks.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Tommi Kokko (tojukokk) on 2013-06-03 10:24:18.720668. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2013-06-03T10:24:19Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306031875.pdf: 1154150 bytes, checksum: b377a1b50af13a22e49b95e24ba7547d (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2013-06-03T10:24:19Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306031875.pdf: 1154150 bytes, checksum: b377a1b50af13a22e49b95e24ba7547d (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)\r\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "115 sivua", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "surrogate model", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "MLP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "recurrent MLP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "RBF network", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "data sampling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Neural networks for computationally expensive problems", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201306031875", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Tietotekniikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematical Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulaattorit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_41672
language eng
last_indexed 2025-02-18T10:55:41Z
main_date 2013-01-01T00:00:00Z
main_date_str 2013
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/71e55940-eac0-4ca7-927d-737eeaf3aacc\/download","text":"URN:NBN:fi:jyu-201306031875.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2013
record_format qdc
source_str_mv jyx
spellingShingle Kokko, Tommi Neural networks for computationally expensive problems surrogate model MLP recurrent MLP RBF network data sampling Tietotekniikka Mathematical Information Technology 602 optimointi simulaattorit neuroverkot
title Neural networks for computationally expensive problems
title_full Neural networks for computationally expensive problems
title_fullStr Neural networks for computationally expensive problems Neural networks for computationally expensive problems
title_full_unstemmed Neural networks for computationally expensive problems Neural networks for computationally expensive problems
title_short Neural networks for computationally expensive problems
title_sort neural networks for computationally expensive problems
title_txtP Neural networks for computationally expensive problems
topic surrogate model MLP recurrent MLP RBF network data sampling Tietotekniikka Mathematical Information Technology 602 optimointi simulaattorit neuroverkot
topic_facet 602 MLP Mathematical Information Technology RBF network Tietotekniikka data sampling neuroverkot optimointi recurrent MLP simulaattorit surrogate model
url https://jyx.jyu.fi/handle/123456789/41672 http://www.urn.fi/URN:NBN:fi:jyu-201306031875
work_keys_str_mv AT kokkotommi neuralnetworksforcomputationallyexpensiveproblems