fullrecord |
[{"key": "dc.contributor.author", "value": "Kokko, Tommi", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1268743", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/41672", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Optimointiin tarvitaan usein simulaattoria, jotka voivat olla laskennallisesti raskaita. Simulaattorit voidaan korvata sijaismalleilla, jotka ovat nopeampi laskea ja voivat olla l\u00e4hes yht\u00e4 tarkkoja kuin simulaattorit. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 tarkastelemme tarkemmin yht\u00e4 sijaismalli, neuroverkkoja. Valmistelemme sijaismalli avusteista optimointia rakentamalla, opettamalla ja validoimalla erilaisia neuroverkkoja sijaismalliksi. Lis\u00e4ksi vertailemme eri data samplaustekniikoilla generoitujen opetusdatojen vaikutusta neuroverkkojen approksimointitarkkuuteen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Optimization often involves usage of a simulator, which can be computationally expensive to use. Simulators can be replaced by surrogate models, which are computationally cheaper and can be almost as accurate as the simulators. In this thesis we consider closer a surrogate model, namely neural networks. We prepare surrogate assisted optimization by building, training and validating different neural network models for a surrogate model. In addition we compare how different training data sets, which are generated by different data sampling techniques, effect the generalization accuracy of neural networks.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Tommi Kokko (tojukokk) on 2013-06-03 10:24:18.720668. Form: Pro gradu -lomake (1 tekij\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-1-tekijae). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2013-06-03T10:24:19Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306031875.pdf: 1154150 bytes, checksum: b377a1b50af13a22e49b95e24ba7547d (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2013-06-03T10:24:19Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201306031875.pdf: 1154150 bytes, checksum: b377a1b50af13a22e49b95e24ba7547d (MD5)\r\nlicense.html: 107 bytes, checksum: a7d86e598caa500b1b433bbb9dc8ef1c (MD5)\r\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "115 sivua", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "surrogate model", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "MLP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "recurrent MLP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "RBF network", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "data sampling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Neural networks for computationally expensive problems", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201306031875", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Tietotekniikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematical Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2013-06-03T10:24:19Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulaattorit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|