Anomaly detection using one-class SVM with wavelet packet decomposition

Anomaly detection has become a popular research topic in the field of machine learning. Support vector machine is one anomaly detection technique and it is coming one the most widely used. In this research, anomaly detection is applied to road condition monitoring, especially pothole detection, usi...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Hautakangas, Hannu, Nieminen, Jukka
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Tietotekniikan laitos, Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylän yliopisto
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2011
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/37465
_version_ 1826225728716275712
author Hautakangas, Hannu Nieminen, Jukka
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto
author_facet Hautakangas, Hannu Nieminen, Jukka Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto Hautakangas, Hannu Nieminen, Jukka Informaatioteknologian tiedekunta Faculty of Information Technology Tietotekniikan laitos Department of Mathematical Information Technology University of Jyväskylä Jyväskylän yliopisto
author_sort Hautakangas, Hannu
datasource_str_mv jyx
description Anomaly detection has become a popular research topic in the field of machine learning. Support vector machine is one anomaly detection technique and it is coming one the most widely used. In this research, anomaly detection is applied to road condition monitoring, especially pothole detection, using accelerometer data. The proposed concept includes data preprocessing, feature extraction, feature selection and classification. Accelerometer data was first filtered and segmented, after which features were extracted with frequency- and time-domain functions, with genetic programming and with wavelet packet decomposition. A classification model was built using support vector machine and the calculated features. The results with actual accelerometer data demonstrates that potholes can be detected reliably. Features from wavelet packet decomposition yielded the best classification results. Poikkeavuuksien havaitsemisesta on tullut suosittu tutkimusalue koneoppimisen alalla. Tukivektorikone on yksi poikkeavuuksien havaitsemismenetelmä ja siitä on tulossa yksi alan käytetyimmistä tekniikoista. Tässä tutkielmassa poikkeavuuksien havaitsemista sovelletaan tien pinnan kuoppien tunnistamiseen kiihtyvyysanturin mittausarvoista. Kiihtyvyysanturin mittausarvoja esikäsiteltiin suodattimen ja ikkunoinnin avulla, minkä jälkeen arvoista laskettiin piirteitä aika- ja taajuustason funktioiden, geneettisen ohjelmoinnin ja aallokemuunnoksen avulla. Parhaiden piirteiden valinnan jälkeen luotiin ennustava malli tukivektorikoneella. Luokittelutulokset osoittavat, että kuopat voidaan havaita luotettavasti kiihtyvyysanturin mittausarvoista. Parhaat tulokset saavutetiin allokemuunnoksella lasketuilla piirteillä.
first_indexed 2024-09-11T08:52:35Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Hautakangas, Hannu", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Nieminen, Jukka", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2012-02-29T17:01:23Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2012-02-29T17:01:23Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2011", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1198566", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/37465", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Anomaly detection has become a popular research topic in the field of machine learning. Support vector machine is one anomaly detection technique and it is coming one the most widely used. In this research, anomaly detection is applied to road condition monitoring, especially pothole detection, using accelerometer data. The proposed concept includes data preprocessing, feature extraction, feature selection and classification. Accelerometer data was first filtered and segmented, after which features were extracted with frequency- and time-domain functions, with genetic programming and with wavelet packet decomposition. A classification model was built using support vector machine and the calculated features. The results with actual accelerometer data demonstrates that potholes can be detected reliably. Features from wavelet packet decomposition yielded the best classification results.", "language": "", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Poikkeavuuksien havaitsemisesta on tullut suosittu tutkimusalue koneoppimisen alalla. Tukivektorikone on yksi poikkeavuuksien havaitsemismenetelm\u00e4 ja siit\u00e4 on tulossa yksi alan k\u00e4ytetyimmist\u00e4 tekniikoista. T\u00e4ss\u00e4 tutkielmassa poikkeavuuksien havaitsemista sovelletaan tien pinnan kuoppien tunnistamiseen kiihtyvyysanturin mittausarvoista. Kiihtyvyysanturin mittausarvoja esik\u00e4siteltiin suodattimen ja ikkunoinnin avulla, mink\u00e4 j\u00e4lkeen arvoista laskettiin piirteit\u00e4 aika- ja taajuustason funktioiden, geneettisen ohjelmoinnin ja aallokemuunnoksen avulla. Parhaiden piirteiden valinnan j\u00e4lkeen luotiin ennustava malli tukivektorikoneella.\r\nLuokittelutulokset osoittavat, ett\u00e4 kuopat voidaan havaita luotettavasti kiihtyvyysanturin mittausarvoista. Parhaat tulokset saavutetiin allokemuunnoksella\r\nlasketuilla piirteill\u00e4.", "language": "", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Hannu Hautakangas (hahautak) on 2012-02-29 17:01:21.271054. Form: Pro gradu -lomake (2 tekij\u00e4\u00e4) (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/pro-gradu-lomake-2-tekijaa). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2012-02-29T17:01:22Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201202291321.pdf: 1196632 bytes, checksum: 8ef536daf1a353a814c9f47eddfbf571 (MD5)\r\nlicense.html: 5563 bytes, checksum: df18d34eec2cc73e507de17f2b36c553 (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2012-02-29T17:01:23Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201202291321.pdf: 1196632 bytes, checksum: 8ef536daf1a353a814c9f47eddfbf571 (MD5)\r\nlicense.html: 5563 bytes, checksum: df18d34eec2cc73e507de17f2b36c553 (MD5)\r\n Previous issue date: 2011", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "68 sivua", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "accelerometer", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "anomaly detection", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "feature selection", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "one-class support vector machine", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "wavelet packet decomposition", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Anomaly detection using one-class SVM with wavelet packet decomposition", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201202291321", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.dcmitype", "value": "Text", "language": "en", "element": "type", "qualifier": "dcmitype", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Tietotekniikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematical Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2012-02-29T17:01:23Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tietotekniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "poikkeavuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_37465
language eng
last_indexed 2025-02-18T10:56:50Z
main_date 2011-01-01T00:00:00Z
main_date_str 2011
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/3f08643a-24b6-451d-80a1-256a6af7ca44\/download","text":"URN:NBN:fi:jyu-201202291321.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2011
record_format qdc
source_str_mv jyx
spellingShingle Hautakangas, Hannu Nieminen, Jukka Anomaly detection using one-class SVM with wavelet packet decomposition accelerometer anomaly detection feature selection one-class support vector machine wavelet packet decomposition Tietotekniikka Mathematical Information Technology 602 koneoppiminen tietotekniikka poikkeavuus
title Anomaly detection using one-class SVM with wavelet packet decomposition
title_full Anomaly detection using one-class SVM with wavelet packet decomposition
title_fullStr Anomaly detection using one-class SVM with wavelet packet decomposition Anomaly detection using one-class SVM with wavelet packet decomposition
title_full_unstemmed Anomaly detection using one-class SVM with wavelet packet decomposition Anomaly detection using one-class SVM with wavelet packet decomposition
title_short Anomaly detection using one-class SVM with wavelet packet decomposition
title_sort anomaly detection using one class svm with wavelet packet decomposition
title_txtP Anomaly detection using one-class SVM with wavelet packet decomposition
topic accelerometer anomaly detection feature selection one-class support vector machine wavelet packet decomposition Tietotekniikka Mathematical Information Technology 602 koneoppiminen tietotekniikka poikkeavuus
topic_facet 602 Mathematical Information Technology Tietotekniikka accelerometer anomaly detection feature selection koneoppiminen one-class support vector machine poikkeavuus tietotekniikka wavelet packet decomposition
url https://jyx.jyu.fi/handle/123456789/37465 http://www.urn.fi/URN:NBN:fi:jyu-201202291321
work_keys_str_mv AT hautakangashannu anomalydetectionusingoneclasssvmwithwaveletpacketdecomposition