QCD corrections in the hadron production of the electron–positron scattering

Elektroni–positroni-annihilaation hadronituoton kokonaisvaikutusala on yksi hiukkasfysiikan perustavanlaatuisimmista mitattavista suureista. Hadroneiksi annihiloitumisen ja myoneiksi annihiloitumisen vaikutusalojen välisen suhteen, Re+e−, tutkiminen mahdollistaa kvarkkien värivarausten määrän, NC, s...

Full description

Bibliographic Details
Main Author: Hyyppä, Joel Simeon
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2025
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/103730
_version_ 1835400231552811008
author Hyyppä, Joel Simeon
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Hyyppä, Joel Simeon Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Hyyppä, Joel Simeon Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Hyyppä, Joel Simeon
datasource_str_mv jyx
description Elektroni–positroni-annihilaation hadronituoton kokonaisvaikutusala on yksi hiukkasfysiikan perustavanlaatuisimmista mitattavista suureista. Hadroneiksi annihiloitumisen ja myoneiksi annihiloitumisen vaikutusalojen välisen suhteen, Re+e−, tutkiminen mahdollistaa kvarkkien värivarausten määrän, NC, selvittämisen. Tässä pro gradu -tutkielmassa Re+e−-suhde lasketaan vahvan kytkinvakion, αs, ensimmäisen kertaluvun tarkkuudella. QCD:n häiriöteorialaskelmat johtavat useisiin divergoituviin termeihin. Näiden regularisoimiseksi lasku tehdään dimensiossa N = 4 − 2ϵ. Kokeellisia mittaustuloksia verrataan Re+e−-suhteen analyyttisiin tuloksiin αs:n ensimmäisen, toisen ja kolmannen kertaluvun tarkkuudella sekä myös naiiviin kvarkki-partonimalliin. Z-bosonin massaa käytetään QCD-skaalaparametrin ΛNf=5 QCD määrittämiseen viiden kvarkkimaun alueella. QCD-skaalaparametrit ΛNf=4 QCD ja ΛNf=3 QCD määritetään vaatimalla αs:n jatkuvuus raskaiden b- ja c-kvarkkien massakynnyksillä. Osa silmukkaintegraaleista vaatii negatiivisen ϵ:n ja osa positiivisen ϵ:n, jotta integraalit voidaan laskea niiden suppenemisalueilla. Laskussa tarvitaan myös negatiivinen lopputilan invariantti massa q2. Näiden matemaattinen hyväksyttävyys voidaan osoittaa käyttämällä analyyttista jatkamista. Analyyttista jatkamista käytetään myös kvarkkien itseisenergiakorjausten laskemisessa. Teoreettisten ja kokeellisten tulosten vertailu osoittaa selvästi, että NC = 3. Parhaiten kokeellisiin mittauksiin sopivat tulokset sijaitsevat neljän ja viiden kvarkkimaun alueilla. Kolmen kvarkkimaun alueella QCD-korjattu Re+e−-suhde asettuu kokeellisten tulosten alapuolelle. The total cross section for hadron production in the electron–positron annihilation is one of the most fundamental observables in particle physics. Studing the ratio between the cross sections of the annihilation into hadrons and into muons provides a way to determine the number of quark colour charges NC. This ratio is known as Re+e−. In this master’s thesis, the ratio Re+e− is calculated to the first order in the strong coupling constant αs. Perturbative QCD calculations will lead to numerous divergent terms. To regularise them, the calculation is done in the dimension N = 4 − 2ϵ. The experimental data is compared with the analytical results for the ratio Re+e− to the first, second and third order in αs and also with the naive quark-parton model. The Z boson mass is used to define the QCD scale parameter ΛNf=5 QCD for the five quark flavour region. The QCD scale parameters ΛNf=4 QCD and ΛNf=3 QCD are defined by requiring the continuity of the αs at the b and c heavy-quark mass thresholds. For the loop integrals, a negative ϵ is needed for some integrals and a positive ϵ for other integrals to be able to calculate them in their convergence regions. Also, a negative square of the final-state invariant mass q2 is needed. These become mathematically approvable through analytic continuation. Analytic continuation is also used when calculating the quark self-energy corrections. Comparing the theoretical results with the experimental data shows clearly that the experimental evidence supports that NC = 3. The best fitting results are found in the four and five quark flavour regions. In the three quark flavour region, the QCD-corrected ratio Re+e− lies lower than the experimental results.
first_indexed 2025-06-18T20:04:50Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Eskola, Kari J.", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Hyypp\u00e4, Joel Simeon", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2025-06-18T10:48:00Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2025-06-18T10:48:00Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2025", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/103730", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Elektroni\u2013positroni-annihilaation hadronituoton kokonaisvaikutusala on yksi hiukkasfysiikan perustavanlaatuisimmista mitattavista suureista. Hadroneiksi annihiloitumisen ja myoneiksi annihiloitumisen vaikutusalojen v\u00e4lisen suhteen, Re+e\u2212, tutkiminen mahdollistaa kvarkkien v\u00e4rivarausten m\u00e4\u00e4r\u00e4n, NC, selvitt\u00e4misen. \n\nT\u00e4ss\u00e4 pro gradu -tutkielmassa Re+e\u2212-suhde lasketaan vahvan kytkinvakion, \u03b1s, ensimm\u00e4isen kertaluvun tarkkuudella. QCD:n h\u00e4iri\u00f6teorialaskelmat johtavat useisiin divergoituviin termeihin. N\u00e4iden regularisoimiseksi lasku tehd\u00e4\u00e4n dimensiossa N = 4 \u2212 2\u03f5. Kokeellisia mittaustuloksia verrataan Re+e\u2212-suhteen analyyttisiin tuloksiin \u03b1s:n ensimm\u00e4isen, toisen ja kolmannen kertaluvun tarkkuudella sek\u00e4 my\u00f6s naiiviin kvarkki-partonimalliin. Z-bosonin massaa k\u00e4ytet\u00e4\u00e4n QCD-skaalaparametrin \u039bNf=5 QCD m\u00e4\u00e4ritt\u00e4miseen viiden kvarkkimaun alueella. QCD-skaalaparametrit \u039bNf=4 QCD ja \u039bNf=3 QCD m\u00e4\u00e4ritet\u00e4\u00e4n vaatimalla \u03b1s:n jatkuvuus raskaiden b- ja c-kvarkkien massakynnyksill\u00e4.\n\nOsa silmukkaintegraaleista vaatii negatiivisen \u03f5:n ja osa positiivisen \u03f5:n, jotta integraalit voidaan laskea niiden suppenemisalueilla. Laskussa tarvitaan my\u00f6s negatiivinen lopputilan invariantti massa q2. N\u00e4iden matemaattinen hyv\u00e4ksytt\u00e4vyys voidaan osoittaa k\u00e4ytt\u00e4m\u00e4ll\u00e4 analyyttista jatkamista. Analyyttista jatkamista k\u00e4ytet\u00e4\u00e4n my\u00f6s kvarkkien itseisenergiakorjausten laskemisessa.\n\nTeoreettisten ja kokeellisten tulosten vertailu osoittaa selv\u00e4sti, ett\u00e4 NC = 3. Parhaiten kokeellisiin mittauksiin sopivat tulokset sijaitsevat nelj\u00e4n ja viiden kvarkkimaun alueilla. Kolmen kvarkkimaun alueella QCD-korjattu Re+e\u2212-suhde asettuu kokeellisten tulosten alapuolelle.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The total cross section for hadron production in the electron\u2013positron annihilation is one of the most fundamental observables in particle physics. Studing the ratio between the cross sections of the annihilation into hadrons and into muons provides a way to determine the number of quark colour charges NC. This ratio is known as Re+e\u2212.\n\nIn this master\u2019s thesis, the ratio Re+e\u2212 is calculated to the first order in the strong coupling constant \u03b1s. Perturbative QCD calculations will lead to numerous divergent terms. To regularise them, the calculation is done in the dimension N = 4 \u2212 2\u03f5. The experimental data is compared with the analytical results for the ratio Re+e\u2212 to the first, second and third order in \u03b1s and also with the naive quark-parton model. The Z boson mass is used to define the QCD scale parameter \u039bNf=5 QCD for the five quark flavour region. The QCD scale parameters \u039bNf=4 QCD and \u039bNf=3 QCD are defined by requiring the continuity of the \u03b1s at the b and c heavy-quark mass thresholds.\n\nFor the loop integrals, a negative \u03f5 is needed for some integrals and a positive \u03f5 for other integrals to be able to calculate them in their convergence regions. Also, a negative square of the final-state invariant mass q2 is needed. These become mathematically approvable through analytic continuation. Analytic continuation is also used when calculating the quark self-energy corrections.\n\nComparing the theoretical results with the experimental data shows clearly that the experimental evidence supports that NC = 3. The best fitting results are found in the four and five quark flavour regions. In the three quark flavour region, the QCD-corrected ratio Re+e\u2212 lies lower than the experimental results.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2025-06-18T10:48:00Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2025-06-18T10:48:00Z (GMT). No. of bitstreams: 0\n Previous issue date: 2025", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "141", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "R-suhde", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "QCD", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "analyyttinen jatkaminen", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hadronic ratio", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "R ratio", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "QCD", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "analytic continuation", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "QCD corrections in the hadron production of the electron\u2013positron scattering", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202506185520", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": null, "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Teoreettinen fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Theoretical Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": "fi", "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kvarkit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hiukkasfysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kvanttiv\u00e4ridynamiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hadronit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "myonit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_103730
language eng
last_indexed 2025-06-18T20:04:50Z
main_date 2025-01-01T00:00:00Z
main_date_str 2025
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/d6a544eb-e2be-432b-9438-84052e2ba9eb\/download","text":"URN:NBN:fi:jyu-202506185520.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2025
record_format qdc
source_str_mv jyx
spellingShingle Hyyppä, Joel Simeon QCD corrections in the hadron production of the electron–positron scattering R-suhde QCD analyyttinen jatkaminen hadronic ratio R ratio analytic continuation Teoreettinen fysiikka Theoretical Physics kvarkit fysiikka hiukkasfysiikka kvanttiväridynamiikka hadronit myonit
title QCD corrections in the hadron production of the electron–positron scattering
title_full QCD corrections in the hadron production of the electron–positron scattering
title_fullStr QCD corrections in the hadron production of the electron–positron scattering QCD corrections in the hadron production of the electron–positron scattering
title_full_unstemmed QCD corrections in the hadron production of the electron–positron scattering QCD corrections in the hadron production of the electron–positron scattering
title_short QCD corrections in the hadron production of the electron–positron scattering
title_sort qcd corrections in the hadron production of the electron positron scattering
title_txtP QCD corrections in the hadron production of the electron–positron scattering
topic R-suhde QCD analyyttinen jatkaminen hadronic ratio R ratio analytic continuation Teoreettinen fysiikka Theoretical Physics kvarkit fysiikka hiukkasfysiikka kvanttiväridynamiikka hadronit myonit
topic_facet QCD R ratio R-suhde Teoreettinen fysiikka Theoretical Physics analytic continuation analyyttinen jatkaminen fysiikka hadronic ratio hadronit hiukkasfysiikka kvanttiväridynamiikka kvarkit myonit
url https://jyx.jyu.fi/handle/123456789/103730 http://www.urn.fi/URN:NBN:fi:jyu-202506185520
work_keys_str_mv AT hyyppäjoelsimeon qcdcorrectionsinthehadronproductionoftheelectronpositronscattering