Optimizing Spotify’s business through big data analytics

Tämän kirjallisuuskatsauksen tavoitteena oli selvittää, kuinka big data - analytiikkaa voidaan hyödyntää Spotifyn ilmaiskäyttäjien tehokkaampaan muuntamiseen maksaviksi tilaajiksi. Digitaalisten alustojen ja suoratoistopalveluiden myötä musiikkiteollisuus on kokenut merkittävän murroksen. Spotify...

Full description

Bibliographic Details
Main Author: Heikkinen, Sami
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/99208
_version_ 1826225817512837120
author Heikkinen, Sami
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Heikkinen, Sami Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Heikkinen, Sami Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Heikkinen, Sami
datasource_str_mv jyx
description Tämän kirjallisuuskatsauksen tavoitteena oli selvittää, kuinka big data - analytiikkaa voidaan hyödyntää Spotifyn ilmaiskäyttäjien tehokkaampaan muuntamiseen maksaviksi tilaajiksi. Digitaalisten alustojen ja suoratoistopalveluiden myötä musiikkiteollisuus on kokenut merkittävän murroksen. Spotify on vakiinnuttanut asemansa johtavana toimijana freemiumliiketoimintamallinsa ansiosta, joka yhdistää maksuttoman, mainosrahoitteisen palvelun ja maksullisen premium-tilauksen. Mallin haasteena ovat kuitenkin taloudelliset paineet, jotka korostavat maksavien asiakkaiden merkitystä. Big data -analytiikka tarjoaa tehokkaita työkaluja liiketoiminnan kehittämiseen, sillä sen avulla voidaan kerätä, analysoida ja hyödyntää suuria tietomääriä käyttäjäkokemuksen optimointiin ja asiakassuhteiden vahvistamiseen. Tutkimuksessa sovellettiin big data -analytiikan viitekehystä, joka jakaa analytiikan prosessin kolmeen vaiheeseen: datan keräämiseen, analysointiin ja hyödyntämiseen. Tulokset osoittivat, että big data analytiikka voi paljastaa käyttäjien tarpeita ja käyttäytymismalleja, joiden avulla markkinointitoimia ja muita liiketoimintastrategioita voidaan kohdentaa tarkemmin. Lisäksi big data analytiikan havaittiin parantavan sekä käyttäjähankintaa että asiakaspysyvyyttä hyödyntämällä personoituja suosituksia, kohdennettuja kampanjoita ja strategioita, kuten premium-kokeilujaksoja uusille asiakkaille ja räätälöityjen premium-tasojen kehittämistä asiakaspoistuman vähentämiseksi. Tutkimus nosti esiin tietosuojaan ja eettisiin kysymyksiin liittyviä haasteita, jotka edellyttävät huolellista hallintaa erityisesti käyttäjätietojen turvallisen käsittelyn ja datan eettisen käytön osalta. Jatkotutkimuksia suositellaan big data analytiikkatyökalujen tehokkuuden arvioimiseksi, suoratoistopalveluiden liiketoimintamallien vertailuun ja levy-yhtiöiden kanssa tehtävän yhteistyön kehittämiseksi. The objective of this literature review was to investigate how big data analytics can be leveraged to enhance the conversion of Spotify’s free users into paying subscribers. The emergence of digital platforms and streaming services has significantly transformed the music industry. Spotify has established itself as a market leader through its freemium business model, which combines a free, adsupported service with a paid premium subscription. However, this model faces financial challenges, highlighting the critical role of paying customers in sustaining profitability. Big data analytics provides robust tools for business development by facilitating the collection, analysis, and utilization of large datasets to optimize user experiences and strengthen customer relationships. This study applied a big data analytics framework that divides the process into three stages: data collection, analysis, and utilization. The findings suggest that big data analytics can uncover user needs and behavioral patterns, enabling more precise targeting of marketing efforts and business strategies. Moreover, big data analytics was found to enhance both user acquisition and retention through the implementation of personalized recommendations, targeted campaigns, and strategies such as premium trial periods for new users and the development of customized premium tiers to reduce churn. The study also identified challenges related to data privacy and ethical considerations, emphasizing the need for rigorous data management practices and ethical application of analytics. Further research is recommended to evaluate the effectiveness of big data analytics tools, compare business models across streaming platforms, and develop sustainable collaboration frameworks with record labels.
first_indexed 2024-12-30T21:00:37Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Clements, Kati", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Heikkinen, Sami", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-12-30T07:23:56Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-12-30T07:23:56Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/99208", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n kirjallisuuskatsauksen tavoitteena oli selvitt\u00e4\u00e4, kuinka big data -\r\nanalytiikkaa voidaan hy\u00f6dynt\u00e4\u00e4 Spotifyn ilmaisk\u00e4ytt\u00e4jien tehokkaampaan\r\nmuuntamiseen maksaviksi tilaajiksi. Digitaalisten alustojen ja suoratoistopalveluiden my\u00f6t\u00e4 musiikkiteollisuus on kokenut merkitt\u00e4v\u00e4n murroksen. Spotify\r\non vakiinnuttanut asemansa johtavana toimijana freemiumliiketoimintamallinsa ansiosta, joka yhdist\u00e4\u00e4 maksuttoman, mainosrahoitteisen\r\npalvelun ja maksullisen premium-tilauksen. Mallin haasteena ovat kuitenkin\r\ntaloudelliset paineet, jotka korostavat maksavien asiakkaiden merkityst\u00e4.\r\nBig data -analytiikka tarjoaa tehokkaita ty\u00f6kaluja liiketoiminnan kehitt\u00e4miseen,\r\nsill\u00e4 sen avulla voidaan ker\u00e4t\u00e4, analysoida ja hy\u00f6dynt\u00e4\u00e4 suuria tietom\u00e4\u00e4ri\u00e4\r\nk\u00e4ytt\u00e4j\u00e4kokemuksen optimointiin ja asiakassuhteiden vahvistamiseen. Tutkimuksessa sovellettiin big data -analytiikan viitekehyst\u00e4, joka jakaa analytiikan\r\nprosessin kolmeen vaiheeseen: datan ker\u00e4\u00e4miseen, analysointiin ja hy\u00f6dynt\u00e4miseen.\r\nTulokset osoittivat, ett\u00e4 big data analytiikka voi paljastaa k\u00e4ytt\u00e4jien tarpeita ja\r\nk\u00e4ytt\u00e4ytymismalleja, joiden avulla markkinointitoimia ja muita liiketoimintastrategioita voidaan kohdentaa tarkemmin. Lis\u00e4ksi big data analytiikan havaittiin parantavan sek\u00e4 k\u00e4ytt\u00e4j\u00e4hankintaa ett\u00e4 asiakaspysyvyytt\u00e4 hy\u00f6dynt\u00e4m\u00e4ll\u00e4\r\npersonoituja suosituksia, kohdennettuja kampanjoita ja strategioita, kuten premium-kokeilujaksoja uusille asiakkaille ja r\u00e4\u00e4t\u00e4l\u00f6ityjen premium-tasojen kehitt\u00e4mist\u00e4 asiakaspoistuman v\u00e4hent\u00e4miseksi.\r\nTutkimus nosti esiin tietosuojaan ja eettisiin kysymyksiin liittyvi\u00e4 haasteita, jotka edellytt\u00e4v\u00e4t huolellista hallintaa erityisesti k\u00e4ytt\u00e4j\u00e4tietojen turvallisen k\u00e4sittelyn ja datan eettisen k\u00e4yt\u00f6n osalta. Jatkotutkimuksia suositellaan big data analytiikkaty\u00f6kalujen tehokkuuden arvioimiseksi, suoratoistopalveluiden liiketoimintamallien vertailuun ja levy-yhti\u00f6iden kanssa teht\u00e4v\u00e4n yhteisty\u00f6n kehitt\u00e4miseksi.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The objective of this literature review was to investigate how big data analytics\r\ncan be leveraged to enhance the conversion of Spotify\u2019s free users into paying\r\nsubscribers. The emergence of digital platforms and streaming services has significantly transformed the music industry. Spotify has established itself as a\r\nmarket leader through its freemium business model, which combines a free, adsupported service with a paid premium subscription. However, this model faces financial challenges, highlighting the critical role of paying customers in sustaining profitability.\r\nBig data analytics provides robust tools for business development by facilitating the collection, analysis, and utilization of large datasets to optimize user\r\nexperiences and strengthen customer relationships. This study applied a big\r\ndata analytics framework that divides the process into three stages: data collection, analysis, and utilization.\r\nThe findings suggest that big data analytics can uncover user needs and behavioral patterns, enabling more precise targeting of marketing efforts and business\r\nstrategies. Moreover, big data analytics was found to enhance both user acquisition and retention through the implementation of personalized recommendations, targeted campaigns, and strategies such as premium trial periods for new\r\nusers and the development of customized premium tiers to reduce churn.\r\nThe study also identified challenges related to data privacy and ethical considerations, emphasizing the need for rigorous data management practices and\r\nethical application of analytics. Further research is recommended to evaluate\r\nthe effectiveness of big data analytics tools, compare business models across\r\nstreaming platforms, and develop sustainable collaboration frameworks with\r\nrecord labels.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-12-30T07:23:56Z\r\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-12-30T07:23:56Z (GMT). No. of bitstreams: 0\r\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "25", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "freemium", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "spotify", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "big data analytics", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Optimizing Spotify\u2019s business through big data analytics", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202412308013", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": null, "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "suoratoistopalvelut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "streaming services", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_99208
language eng
last_indexed 2025-02-18T10:56:20Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/257a3bbe-4f3f-487b-a2db-48a452d6eec9\/download","text":"URN:NBN:fi:jyu-202412308013.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Heikkinen, Sami Optimizing Spotify’s business through big data analytics freemium spotify big data analytics Tietojärjestelmätiede Information Systems Science 601 suoratoistopalvelut big data streaming services
title Optimizing Spotify’s business through big data analytics
title_full Optimizing Spotify’s business through big data analytics
title_fullStr Optimizing Spotify’s business through big data analytics Optimizing Spotify’s business through big data analytics
title_full_unstemmed Optimizing Spotify’s business through big data analytics Optimizing Spotify’s business through big data analytics
title_short Optimizing Spotify’s business through big data analytics
title_sort optimizing spotify s business through big data analytics
title_txtP Optimizing Spotify’s business through big data analytics
topic freemium spotify big data analytics Tietojärjestelmätiede Information Systems Science 601 suoratoistopalvelut big data streaming services
topic_facet 601 Information Systems Science Tietojärjestelmätiede big data big data analytics freemium spotify streaming services suoratoistopalvelut
url https://jyx.jyu.fi/handle/123456789/99208 http://www.urn.fi/URN:NBN:fi:jyu-202412308013
work_keys_str_mv AT heikkinensami optimizingspotifysbusinessthroughbigdataanalytics