Penalized Canonical Correlation Analysis for MEG Data

Canonical correlation analysis is a statistical method used to examine linear relationships between two sets of variables measured on the same statistical units, by forming highly correlated linear combinations of the variables in each set. This method cannot be used in the context of high-dimension...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Koskinen, Juuso
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2024
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/98198
_version_ 1826225771113349120
author Koskinen, Juuso
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Koskinen, Juuso Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Koskinen, Juuso Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Koskinen, Juuso
datasource_str_mv jyx
description Canonical correlation analysis is a statistical method used to examine linear relationships between two sets of variables measured on the same statistical units, by forming highly correlated linear combinations of the variables in each set. This method cannot be used in the context of high-dimensional data, where the number of variables in either variable set exceeds the sample size. In this setting, sparse canonical correlation analysis (SCCA) can be utilized to perform regularized canonical correlation for high-dimensional data, producing sparse solutions more feasible for interpretation. In this thesis SCCA was used to explore the associations between temperamental traits and interoception. Temperamental traits decribe a person’s dispositional responses to changes in their environment, while interoception refers to a person’s sensitivity to stimuli originating from inside their own body, such as heart beat. Both of these attributes have a neurobiological basis, and some temperamental traits, especially ones related to anxiety have been found to be linked to interoceptive sensitivity. A data set consisting of magnetoencephalography (MEG) measurements of neuronal activity recorded during an interoception task and temperament questionnaire answers from 28 subjects was analyzed using SCCA with and without penalization in high dimensional setting, and after dimension reduction achieved by principal component analysis (PCA). While a pattern of higher α-oscillation activity during an interoception task in the left parietal and right frontal lobe associated with lower scores on the Beck Anxiety Inventory and Fun seeking section of Behavioral Activation Scale, and higher α-activity in the left frontal lobe associated with higher scores on the same questionnaires was observed, no statistically significant canonical pairs were found based on permutation tests. SCCA was found to ease interpretation of the canonical coefficients of the questionnaire variables via sparse coefficients, but overly sparse coefficients for MEG variables can hinder interpretation, as the spatial resolution of MEG is not enough to discern small areas of neuronal activation. For this reason larger areas of brain activation are preferred and canonical coefficients gained through PCA can be more useful for interpretation.
first_indexed 2024-11-08T21:00:28Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Nordhausen, Klaus", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Taskinen, Sara", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Koskinen, Juuso", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-11-07T14:53:58Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-11-07T14:53:58Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/98198", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Canonical correlation analysis is a statistical method used to examine linear\nrelationships between two sets of variables measured on the same statistical\nunits, by forming highly correlated linear combinations of the variables in\neach set. This method cannot be used in the context of high-dimensional\ndata, where the number of variables in either variable set exceeds the sample\nsize. In this setting, sparse canonical correlation analysis (SCCA) can\nbe utilized to perform regularized canonical correlation for high-dimensional\ndata, producing sparse solutions more feasible for interpretation.\nIn this thesis SCCA was used to explore the associations between temperamental\ntraits and interoception. Temperamental traits decribe a person\u2019s\ndispositional responses to changes in their environment, while interoception\nrefers to a person\u2019s sensitivity to stimuli originating from inside their own\nbody, such as heart beat. Both of these attributes have a neurobiological basis,\nand some temperamental traits, especially ones related to anxiety have\nbeen found to be linked to interoceptive sensitivity. A data set consisting\nof magnetoencephalography (MEG) measurements of neuronal activity\nrecorded during an interoception task and temperament questionnaire answers\nfrom 28 subjects was analyzed using SCCA with and without penalization\nin high dimensional setting, and after dimension reduction achieved\nby principal component analysis (PCA).\nWhile a pattern of higher \u03b1-oscillation activity during an interoception\ntask in the left parietal and right frontal lobe associated with lower scores on\nthe Beck Anxiety Inventory and Fun seeking section of Behavioral Activation\nScale, and higher \u03b1-activity in the left frontal lobe associated with higher\nscores on the same questionnaires was observed, no statistically significant\ncanonical pairs were found based on permutation tests. SCCA was found to\nease interpretation of the canonical coefficients of the questionnaire variables\nvia sparse coefficients, but overly sparse coefficients for MEG variables can\nhinder interpretation, as the spatial resolution of MEG is not enough to\ndiscern small areas of neuronal activation. For this reason larger areas of\nbrain activation are preferred and canonical coefficients gained through PCA\ncan be more useful for interpretation.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Jutta Aalto (aalto@jyu.fi) on 2024-11-07T14:53:58Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-11-07T14:53:58Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "99", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "interoception", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "temperamental trait", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "magnetoencephalography", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "canonical correlation analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "lasso", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "penalized canonical correlation analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Penalized Canonical Correlation Analysis for MEG Data", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202411077046", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tilastotiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Statistics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4043", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_98198
language eng
last_indexed 2025-02-18T10:54:58Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/1e74b8ed-b610-4fd0-b384-df448a6f3a6e\/download","text":"URN:NBN:fi:jyu-202411077046.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Koskinen, Juuso Penalized Canonical Correlation Analysis for MEG Data interoception temperamental trait magnetoencephalography canonical correlation analysis lasso penalized canonical correlation analysis Tilastotiede Statistics 4043
title Penalized Canonical Correlation Analysis for MEG Data
title_full Penalized Canonical Correlation Analysis for MEG Data
title_fullStr Penalized Canonical Correlation Analysis for MEG Data Penalized Canonical Correlation Analysis for MEG Data
title_full_unstemmed Penalized Canonical Correlation Analysis for MEG Data Penalized Canonical Correlation Analysis for MEG Data
title_short Penalized Canonical Correlation Analysis for MEG Data
title_sort penalized canonical correlation analysis for meg data
title_txtP Penalized Canonical Correlation Analysis for MEG Data
topic interoception temperamental trait magnetoencephalography canonical correlation analysis lasso penalized canonical correlation analysis Tilastotiede Statistics 4043
topic_facet 4043 Statistics Tilastotiede canonical correlation analysis interoception lasso magnetoencephalography penalized canonical correlation analysis temperamental trait
url https://jyx.jyu.fi/handle/123456789/98198 http://www.urn.fi/URN:NBN:fi:jyu-202411077046
work_keys_str_mv AT koskinenjuuso penalizedcanonicalcorrelationanalysisformegdata