Ultra-high doses tests on 28nm CMOS technology for high energy physics application

This work is about the qualification of next generation of electronics detectors for high energy physics application. A new upgrade of the Large Hadron Collider, designated as High Luminosity Large Hadron Collider, is scheduled for completion around 2030 and applications specific integrated circuits...

Full description

Bibliographic Details
Main Author: Ciachera, Geoffrey
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/97160
_version_ 1825675451312373760
author Ciachera, Geoffrey
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Ciachera, Geoffrey Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Ciachera, Geoffrey Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Ciachera, Geoffrey
datasource_str_mv jyx
description This work is about the qualification of next generation of electronics detectors for high energy physics application. A new upgrade of the Large Hadron Collider, designated as High Luminosity Large Hadron Collider, is scheduled for completion around 2030 and applications specific integrated circuits will be exposed to new ultra-high radiation radiations levels. In comparison to the Large Hadron Collider, where the maximum expected total ionizing dose is limited to a few tens of Mrad after 10 years of experiment, while the high luminosity maximum radiation dose is predicted to be significantly higher for certain chips, reaching above 2.5 Grad. This total ionizing dose is approximately a hundred times greater and reaches new horizons in radiation electronics engineering. In this study, the 28nm complementary metal-oxide semiconductor has been subjected to testing thanks to specific chip that allow to irradiated single diode or transistors. In Chapter 3, three tests were conducted on diode inside field oxides field effect transistor structure. The first test reaches a 1Grad total ionizing dose while the other two only 100Mrad. The second and third test were made at different biases and temperatures respectively. Results of these tests indicate that the damage to the diode is greater when the applied voltages and temperature conditions are higher. The second test was conducted on transistors, and different transistors sizes i.e. W/L = 100/30 𝑛𝑚 and W/L = 3/0.03 𝜇𝑚 and W/L = 0.1/1 𝜇𝑚 where W and L stand for the width (W) and the length (L) of the transistors respectively. These transistors were subjected to irradiation at a total ionizing dose of 5 Grad with the objective of evaluating their survivability. As a result, all n-doped and p-doped metal oxide semi-conductor transistors survived i.e. a significant current from drain to source is flowing, except the long and narrow p-doped devices which reached a degradation of 99%. Finally, n-doped device got a strong increase in the leakage current between 10 thousand to 1 million more than the pre-irradiation one. Overall, the 28 nm complementary metal oxide semi-conductor is a promising technology to make application specific integrated circuits for new detectors generation for high energy physics applications. However, this report is not exhaustive and a lot of more tests are needed.
first_indexed 2024-09-24T20:00:24Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Borghello, Giulio", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Termo, Gennaro", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Girard, Sylvain", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Javanainen, Arto", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Ciachera, Geoffrey", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-09-24T06:06:20Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-09-24T06:06:20Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/97160", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This work is about the qualification of next generation of electronics detectors for high\nenergy physics application. A new upgrade of the Large Hadron Collider, designated as\nHigh Luminosity Large Hadron Collider, is scheduled for completion around 2030 and\napplications specific integrated circuits will be exposed to new ultra-high radiation\nradiations levels. In comparison to the Large Hadron Collider, where the maximum\nexpected total ionizing dose is limited to a few tens of Mrad after 10 years of experiment,\nwhile the high luminosity maximum radiation dose is predicted to be significantly\nhigher for certain chips, reaching above 2.5 Grad. This total ionizing dose is\napproximately a hundred times greater and reaches new horizons in radiation\nelectronics engineering.\nIn this study, the 28nm complementary metal-oxide semiconductor has been subjected\nto testing thanks to specific chip that allow to irradiated single diode or transistors. In\nChapter 3, three tests were conducted on diode inside field oxides field effect transistor\nstructure. The first test reaches a 1Grad total ionizing dose while the other two only\n100Mrad. The second and third test were made at different biases and temperatures\nrespectively. Results of these tests indicate that the damage to the diode is greater when\nthe applied voltages and temperature conditions are higher.\nThe second test was conducted on transistors, and different transistors sizes i.e. W/L =\n100/30 \ud835\udc5b\ud835\udc5a and W/L = 3/0.03 \ud835\udf07\ud835\udc5a and W/L = 0.1/1 \ud835\udf07\ud835\udc5a where W and L stand for the\nwidth (W) and the length (L) of the transistors respectively. These transistors were\nsubjected to irradiation at a total ionizing dose of 5 Grad with the objective of evaluating\ntheir survivability. As a result, all n-doped and p-doped metal oxide semi-conductor\ntransistors survived i.e. a significant current from drain to source is flowing, except the\nlong and narrow p-doped devices which reached a degradation of 99%. Finally, n-doped\ndevice got a strong increase in the leakage current between 10 thousand to 1 million\nmore than the pre-irradiation one.\nOverall, the 28 nm complementary metal oxide semi-conductor is a promising\ntechnology to make application specific integrated circuits for new detectors generation\nfor high energy physics applications. However, this report is not exhaustive and a lot of\nmore tests are needed.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-09-24T06:06:20Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-09-24T06:06:20Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "58", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "ultra-high-doses", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "28nm CMOS technology", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "high energy physics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Ultra-high doses tests on 28nm CMOS technology for high energy physics application", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202409246038", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Soveltava fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Applied Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "public", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "1700\u20ac", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "university", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4023", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teily", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "puolijohteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mikroelektroniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teilyannokset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teilyfysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hiukkaskiihdyttimet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hiukkasfysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fotonit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "semiconductors", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "microelectronics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation doses", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "particle accelerators", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "particle physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "photons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_97160
language eng
last_indexed 2025-02-18T10:56:37Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/da792243-83eb-44ee-b534-cde4df919e86\/download","text":"URN:NBN:fi:jyu-202409246038.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Ciachera, Geoffrey Ultra-high doses tests on 28nm CMOS technology for high energy physics application ultra-high-doses 28nm CMOS technology high energy physics Soveltava fysiikka Applied Physics 4023 säteily puolijohteet mikroelektroniikka säteilyannokset säteilyfysiikka hiukkaskiihdyttimet hiukkasfysiikka fotonit radiation semiconductors microelectronics radiation doses radiation physics particle accelerators particle physics photons
title Ultra-high doses tests on 28nm CMOS technology for high energy physics application
title_full Ultra-high doses tests on 28nm CMOS technology for high energy physics application
title_fullStr Ultra-high doses tests on 28nm CMOS technology for high energy physics application Ultra-high doses tests on 28nm CMOS technology for high energy physics application
title_full_unstemmed Ultra-high doses tests on 28nm CMOS technology for high energy physics application Ultra-high doses tests on 28nm CMOS technology for high energy physics application
title_short Ultra-high doses tests on 28nm CMOS technology for high energy physics application
title_sort ultra high doses tests on 28nm cmos technology for high energy physics application
title_txtP Ultra-high doses tests on 28nm CMOS technology for high energy physics application
topic ultra-high-doses 28nm CMOS technology high energy physics Soveltava fysiikka Applied Physics 4023 säteily puolijohteet mikroelektroniikka säteilyannokset säteilyfysiikka hiukkaskiihdyttimet hiukkasfysiikka fotonit radiation semiconductors microelectronics radiation doses radiation physics particle accelerators particle physics photons
topic_facet 28nm CMOS technology 4023 Applied Physics Soveltava fysiikka fotonit high energy physics hiukkasfysiikka hiukkaskiihdyttimet microelectronics mikroelektroniikka particle accelerators particle physics photons puolijohteet radiation radiation doses radiation physics semiconductors säteily säteilyannokset säteilyfysiikka ultra-high-doses
url https://jyx.jyu.fi/handle/123456789/97160 http://www.urn.fi/URN:NBN:fi:jyu-202409246038
work_keys_str_mv AT ciacherageoffrey ultrahighdosestestson28nmcmostechnologyforhighenergyphysicsapplication