Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach

Time-series forecasting is a longstanding problem, continually evolving with new methodologies. A significant portion of today's data consists of timestamped measurements, such as stock prices, medical monitoring, application logs, weather records, and energy consumption data. Most deep-learnin...

Full description

Bibliographic Details
Main Author: Kalliala, Karri Hermanni
Other Authors: Faculty of Information Technology, Informaatioteknologian tiedekunta, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/95942
_version_ 1828193033404809216
author Kalliala, Karri Hermanni
author2 Faculty of Information Technology Informaatioteknologian tiedekunta University of Jyväskylä Jyväskylän yliopisto
author_facet Kalliala, Karri Hermanni Faculty of Information Technology Informaatioteknologian tiedekunta University of Jyväskylä Jyväskylän yliopisto Kalliala, Karri Hermanni Faculty of Information Technology Informaatioteknologian tiedekunta University of Jyväskylä Jyväskylän yliopisto
author_sort Kalliala, Karri Hermanni
datasource_str_mv jyx
description Time-series forecasting is a longstanding problem, continually evolving with new methodologies. A significant portion of today's data consists of timestamped measurements, such as stock prices, medical monitoring, application logs, weather records, and energy consumption data. Most deep-learning approaches for forecasting time-series data rely on the memory of processing cells, which remember past events and connect them to future occurrences. This thesis explores an innovative method by transforming time-series datasets into the format of colored digital images and employing Convolutional Neural Networks (CNNs) to process multiple cross-correlating time-series datasets simultaneously. This method allows for the analysis of the same time of day across multiple days using a single convolution kernel. The CNN is integrated into a Generative Adversarial Network (GAN), a robust technique for training generative models. The GAN is then trained to synthesize a time-series dataset consisting of electricity consumption measurements, temperature measurements, and wind speed measurements, spanning the hours of an entire year. The model successfully generated accurate temperature and wind data, although struggling with correct pattern generation for electricity consumption data. This might be due to a multitude of reasons, such as data preparation, model design, and assumptions regarding the data. This study demonstrates the feasibility and potential of generating accurate time-series data in the format of an image, potentially inspiring new approaches for developing time-series models. Aikasarjojen ennustaminen on pitkään tutkittu ongelma, joka kehittyy jatkuvasti uusien menetelmien myötä. Merkittävä osa nykyään tallennetuista tiedoista koostuu aikaleimatuista mittauksista, kuten osakekurssit, lääketieteelliset seurantatiedot, sovelluslokit, säähavainnot ja energiankulutustiedot. Useimmat syväoppimiseen perustuvat lähestymistavat aikasarjojen ennustamiseen nojaavat prosessointisolujen muistiin, joka tarkastelee menneitä tapahtumia, yhdistäen ne tuleviin tapahtumiin. Tämä tutkielma tarkastelee innovatiivista menetelmää, jossa aikasarjat muutetaan digitaalisen värikuvan muotoon ja konvoluutioneuroverkkoja (CNN) hyödyntäen käsitellään useita aikasarjatietoainestoja yhtä aikaa. Tämä menetelmä mahdollistaa usean päivän samanaikaisen prosessoinnin, helpottaen toistuvien kuvioiden havaitsemista. Konvoluutioneuroverkko integroidaan generatiiviseen kilpailevaan verkostoon (GAN), joka on tehokkaaksi todettu menetelmä generatiivisten mallien kouluttamiseen. GAN-verkko koulutettiin luomaan aikasarjatietoaineistoja, jotka kattavat vuoden jokaisen tunnin sähkönkulutuksen, lämpötilan ja tuulennopeuden. Malli onnistui tuottamaan tarkkoja lämpötila- ja tuuliaikasarjoja, mutta sähkönkulutuksen vaihtelevien kulutuskuvioiden toisintaminen ei onnistunut. Tämä voi johtua muun muassa mallien suunnitteluvirheistä, datan esikäsittelystä ja oletuksista koulutusdataan. Kokonaisuudessaan tämä tutkimus osoitti potentiaalia kuvamuotoisten aikasarjojen generoinnissa, mikä saattaa inspiroida uusia lähestymistapoja aikasarjamallien kehittämisessä.
first_indexed 2024-06-17T20:00:46Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "P\u00f6l\u00f6nen, Ilkka", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kalliala, Karri Hermanni", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-06-17T07:40:42Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-06-17T07:40:42Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95942", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Time-series forecasting is a longstanding problem, continually evolving with new methodologies. A significant portion of today's data consists of timestamped measurements, such as stock prices, medical monitoring, application logs, weather records, and energy consumption data. Most deep-learning approaches for forecasting time-series data rely on the memory of processing cells, which remember past events and connect them to future occurrences. This thesis explores an innovative method by transforming time-series datasets into the format of colored digital images and employing Convolutional Neural Networks (CNNs) to process multiple cross-correlating time-series datasets simultaneously. This method allows for the analysis of the same time of day across multiple days using a single convolution kernel.\n\nThe CNN is integrated into a Generative Adversarial Network (GAN), a robust technique for training generative models. The GAN is then trained to synthesize a time-series dataset consisting of electricity consumption measurements, temperature measurements, and wind speed measurements, spanning the hours of an entire year. The model successfully generated accurate temperature and wind data, although struggling with correct pattern generation for electricity consumption data. This might be due to a multitude of reasons, such as data preparation, model design, and assumptions regarding the data. This study demonstrates the feasibility and potential of generating accurate time-series data in the format of an image, potentially inspiring new approaches for developing time-series models.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Aikasarjojen ennustaminen on pitk\u00e4\u00e4n tutkittu ongelma, joka kehittyy jatkuvasti uusien menetelmien my\u00f6t\u00e4. Merkitt\u00e4v\u00e4 osa nyky\u00e4\u00e4n tallennetuista tiedoista koostuu aikaleimatuista mittauksista, kuten osakekurssit, l\u00e4\u00e4ketieteelliset seurantatiedot, sovelluslokit, s\u00e4\u00e4havainnot ja energiankulutustiedot. Useimmat syv\u00e4oppimiseen perustuvat l\u00e4hestymistavat aikasarjojen ennustamiseen nojaavat prosessointisolujen muistiin, joka tarkastelee menneit\u00e4 tapahtumia, yhdist\u00e4en ne tuleviin tapahtumiin. T\u00e4m\u00e4 tutkielma tarkastelee innovatiivista menetelm\u00e4\u00e4, jossa aikasarjat muutetaan digitaalisen v\u00e4rikuvan muotoon ja konvoluutioneuroverkkoja (CNN) hy\u00f6dynt\u00e4en k\u00e4sitell\u00e4\u00e4n useita aikasarjatietoainestoja yht\u00e4 aikaa. T\u00e4m\u00e4 menetelm\u00e4 mahdollistaa usean p\u00e4iv\u00e4n samanaikaisen prosessoinnin, helpottaen toistuvien kuvioiden havaitsemista. \n\nKonvoluutioneuroverkko integroidaan generatiiviseen kilpailevaan verkostoon (GAN), joka on tehokkaaksi todettu menetelm\u00e4 generatiivisten mallien kouluttamiseen. GAN-verkko koulutettiin luomaan aikasarjatietoaineistoja, jotka kattavat vuoden jokaisen tunnin s\u00e4hk\u00f6nkulutuksen, l\u00e4mp\u00f6tilan ja tuulennopeuden. Malli onnistui tuottamaan tarkkoja l\u00e4mp\u00f6tila- ja tuuliaikasarjoja, mutta s\u00e4hk\u00f6nkulutuksen vaihtelevien kulutuskuvioiden toisintaminen ei onnistunut. T\u00e4m\u00e4 voi johtua muun muassa mallien suunnitteluvirheist\u00e4, datan esik\u00e4sittelyst\u00e4 ja oletuksista koulutusdataan. Kokonaisuudessaan t\u00e4m\u00e4 tutkimus osoitti potentiaalia kuvamuotoisten aikasarjojen generoinnissa, mik\u00e4 saattaa inspiroida uusia l\u00e4hestymistapoja aikasarjamallien kehitt\u00e4misess\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2024-06-17T07:40:42Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-06-17T07:40:42Z (GMT). No. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "60", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202406174708", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Machine Learning and Data Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/en/workspaces/facilities/facilities#autotoc-item-autotoc-2).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat#autotoc-item-autotoc-2.", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_95942
language eng
last_indexed 2025-03-31T20:00:53Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Kalliala, Karri Hermanni Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach Machine Learning and Data Science
title Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
title_full Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
title_fullStr Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
title_full_unstemmed Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
title_short Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
title_sort energy consumption synthesis through time series image representation a gan based approach
title_txtP Energy Consumption Synthesis through Time-Series Image Representation: A GAN-Based Approach
topic Machine Learning and Data Science
topic_facet Machine Learning and Data Science
url https://jyx.jyu.fi/handle/123456789/95942 http://www.urn.fi/URN:NBN:fi:jyu-202406174708
work_keys_str_mv AT kallialakarrihermanni energyconsumptionsynthesisthroughtimeseriesimagerepresentationaganbasedapp