Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam

In optomechanical systems, the light is utilized to measure tiny mechanical displacements of matter. Creating a confined electric inside an optical cavity makes small fluctuations in a mechanical system visible. This property can be taken advantage of when measuring the state of a quantum system, su...

Full description

Bibliographic Details
Main Author: Ahopelto, Simeoni
Other Authors: Faculty of Sciences, Matemaattis-luonnontieteellinen tiedekunta, Department of Physics, Fysiikan laitos, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/95871
_version_ 1826225767528267776
author Ahopelto, Simeoni
author2 Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_facet Ahopelto, Simeoni Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto Ahopelto, Simeoni Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Physics Fysiikan laitos University of Jyväskylä Jyväskylän yliopisto
author_sort Ahopelto, Simeoni
datasource_str_mv jyx
description In optomechanical systems, the light is utilized to measure tiny mechanical displacements of matter. Creating a confined electric inside an optical cavity makes small fluctuations in a mechanical system visible. This property can be taken advantage of when measuring the state of a quantum system, such as an electron's spin. In this thesis, we investigated the geometric design of a photonic crystal silicon nanobeam working as a quantum transducer between donor spins, phonons, and photons. The photonic crystal nanobeam combines an optical cavity with a mechanical oscillator, so that their resonance frequencies can be coupled via strain to a spin state of a donor atom in a magnetic field. The nanobeam was optimized with simulations using electromagnetic and mechanical FEM eigenfrequency solvers in COMSOL Multiphysics software. We optimized the coupling using a width tapered nanobeam design. We reached an optomechanical coupling of a few MHz with optical frequencies around 200 THz, as well as a spin-strain coupling around 100 Hz for a phosphorus donor in a magnetic field of 1 T. The optimized coupling strengths suggest that coupling spins via mechanical strain of the nanobeam is not feasible for optical single spin measurements with the current fabrication limitations but can be used for bulk spin measurements. Furthermore, the designed nanobeam can be utilized for displacement measurements near the zero-point energy of the nanobeam. Optomekaaniset laitteet hyödyntävät valon ominaisuuksia todella pienten mekaanisten värähtelyjen mittaamiseen. Peilien muodostamilla optisilla kaviteeteilla mekaaniset värähtelyt on mahdollista saada näkyviksi. Tätä ominaisuutta voidaan hyödyntää pienten kvanttisysteemien kuten elektronin spin-tilan mittaamiseen. Tässä tutkielmassa suunniteltiin ja optimoitiin fotonikiteisen piinanopalkin geometria. Nanopalkissa yhdistyvät optinen kaviteetti, mekaaninen värähtelijä, sekä piihin implantoitujen donoriatomien spin-systeemi, joiden kytkentä eli tilojen riippuvuus toisistaan yritettiin optimoida. Tällöin nanopalkki toimisi kvanttisensorina ja -muuntimena valon fotonien ja elektronin spin-tilan välillä. Optimointi tehtiin simuloimalla nanopalkin mekaanisia ja sähkökentän resonanssitaajuuksia elementtimetodilla COMSOL Multiphysics -ohjelmistossa. Optimoinnissa päädyttiin nanopalkin keskeltä ohennettuun geometriaan, jolla saavutettiin muutaman MHz suuruinen optomekaaninen kytkentä 200 THz valon taajuuksilla ja 100 Hz suuruinen spin-venymä-kytkentä 1 T magneettikentässä. Simuloitu spin-venymä-kytkentä ei ollut tarpeeksi suuri yksittäisen donoriatomin spin-tilan mittaamiseen, mutta spin-kytkentää voidaan vahvistaa useammalla donoriatomilla. Optomekaaninen kytkentä oli riittävä mekaanisten värähtelyjen mittaamiseen lähellä nanopalkin nollapiste-energiaa.
first_indexed 2024-06-14T20:00:25Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Muhonen, Juha", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Ahopelto, Simeoni", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-06-14T08:41:32Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-06-14T08:41:32Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95871", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In optomechanical systems, the light is utilized to measure tiny mechanical displacements of matter. Creating a confined electric inside an optical cavity makes small fluctuations in a mechanical system visible. This property can be taken advantage of when measuring the state of a quantum system, such as an electron's spin. \nIn this thesis, we investigated the geometric design of a photonic crystal silicon nanobeam working as a quantum transducer between donor spins, phonons, and photons. The photonic crystal nanobeam combines an optical cavity with a mechanical oscillator, so that their resonance frequencies can be coupled via strain to a spin state of a donor atom in a magnetic field. The nanobeam was optimized with simulations using electromagnetic and mechanical FEM eigenfrequency solvers in COMSOL Multiphysics software.\nWe optimized the coupling using a width tapered nanobeam design. We reached an optomechanical coupling of a few MHz with optical frequencies around 200 THz, as well as a spin-strain coupling around 100 Hz for a phosphorus donor in a magnetic field of 1 T. The optimized coupling strengths suggest that coupling spins via mechanical strain of the nanobeam is not feasible for optical single spin measurements with the current fabrication limitations but can be used for bulk spin measurements. Furthermore, the designed nanobeam can be utilized for displacement measurements near the zero-point energy of the nanobeam.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Optomekaaniset laitteet hy\u00f6dynt\u00e4v\u00e4t valon ominaisuuksia todella pienten mekaanisten v\u00e4r\u00e4htelyjen mittaamiseen. Peilien muodostamilla optisilla kaviteeteilla mekaaniset v\u00e4r\u00e4htelyt on mahdollista saada n\u00e4kyviksi. T\u00e4t\u00e4 ominaisuutta voidaan hy\u00f6dynt\u00e4\u00e4 pienten kvanttisysteemien kuten elektronin spin-tilan mittaamiseen.\nT\u00e4ss\u00e4 tutkielmassa suunniteltiin ja optimoitiin fotonikiteisen piinanopalkin geometria. Nanopalkissa yhdistyv\u00e4t optinen kaviteetti, mekaaninen v\u00e4r\u00e4htelij\u00e4, sek\u00e4 piihin implantoitujen donoriatomien spin-systeemi, joiden kytkent\u00e4 eli tilojen riippuvuus toisistaan yritettiin optimoida. T\u00e4ll\u00f6in nanopalkki toimisi kvanttisensorina ja -muuntimena valon fotonien ja elektronin spin-tilan v\u00e4lill\u00e4. Optimointi tehtiin simuloimalla nanopalkin mekaanisia ja s\u00e4hk\u00f6kent\u00e4n resonanssitaajuuksia elementtimetodilla COMSOL Multiphysics -ohjelmistossa. \nOptimoinnissa p\u00e4\u00e4dyttiin nanopalkin keskelt\u00e4 ohennettuun geometriaan, jolla saavutettiin muutaman MHz suuruinen optomekaaninen kytkent\u00e4 200 THz valon taajuuksilla ja 100 Hz suuruinen spin-venym\u00e4-kytkent\u00e4 1 T magneettikent\u00e4ss\u00e4. Simuloitu spin-venym\u00e4-kytkent\u00e4 ei ollut tarpeeksi suuri yksitt\u00e4isen donoriatomin spin-tilan mittaamiseen, mutta spin-kytkent\u00e4\u00e4 voidaan vahvistaa useammalla donoriatomilla. Optomekaaninen kytkent\u00e4 oli riitt\u00e4v\u00e4 mekaanisten v\u00e4r\u00e4htelyjen mittaamiseen l\u00e4hell\u00e4 nanopalkin nollapiste-energiaa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2024-06-14T08:41:32Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-06-14T08:41:32Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "91", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "nanobeam", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "donor spins", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "photonic crystals", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "mechanical resonators", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202406144637", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kvanttifysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fotonit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "quantum physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "photons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_95871
language eng
last_indexed 2025-02-18T10:54:20Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/64d06b73-220e-4f5f-aa55-98329349e09d\/download","text":"URN:NBN:fi:jyu-202406144637.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Ahopelto, Simeoni Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam nanobeam donor spins photonic crystals mechanical resonators Physics Fysiikka 4021 simulointi kvanttifysiikka optiikka fotonit fysiikka simulation quantum physics optics photons physics
title Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
title_full Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
title_fullStr Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
title_full_unstemmed Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
title_short Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
title_sort optomechanical simulations for optimizing spin phonon photon coupling in a silicon nanobeam
title_txtP Optomechanical Simulations for Optimizing Spin-Phonon-Photon Coupling in a Silicon Nanobeam
topic nanobeam donor spins photonic crystals mechanical resonators Physics Fysiikka 4021 simulointi kvanttifysiikka optiikka fotonit fysiikka simulation quantum physics optics photons physics
topic_facet 4021 Fysiikka Physics donor spins fotonit fysiikka kvanttifysiikka mechanical resonators nanobeam optics optiikka photonic crystals photons physics quantum physics simulation simulointi
url https://jyx.jyu.fi/handle/123456789/95871 http://www.urn.fi/URN:NBN:fi:jyu-202406144637
work_keys_str_mv AT ahopeltosimeoni optomechanicalsimulationsforoptimizingspinphononphotoncouplinginasiliconnanobeam