The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency

Teknologian kehittyessä vähittäiskaupan sektori siirtyy monikanavaiseen lähestymistapaan missä fyysinen ja digitaalinen kaupankäynti sulautuu yhteen. Tätä siirtymää korostaa kestävyyden merkityksen kasvu, mitä ohjataan usein jopa lainsäädännöllä. Tutkimus toteutettiin kuvailevana kirjallisuuskatsauk...

Full description

Bibliographic Details
Main Author: Salo, Eetu
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/95711
_version_ 1826225814840016896
author Salo, Eetu
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Salo, Eetu Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Salo, Eetu Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Salo, Eetu
datasource_str_mv jyx
description Teknologian kehittyessä vähittäiskaupan sektori siirtyy monikanavaiseen lähestymistapaan missä fyysinen ja digitaalinen kaupankäynti sulautuu yhteen. Tätä siirtymää korostaa kestävyyden merkityksen kasvu, mitä ohjataan usein jopa lainsäädännöllä. Tutkimus toteutettiin kuvailevana kirjallisuuskatsauksena, jossa tutkittiin mitä olemassaoleva kirjallisuus sanoo ennakoivan analytiikan kyvystä parantaa vähittäiskaupan toimitusketjun operationaalista tehokkuutta ja kestävyyyttä. Tutkimus toteutettiin käyttäen vertaisarvioituja tieteellisiä julkaisuja, jotka käsittelevät ennakoivaa analytiikkaa, kestävyyttä ja vähittäiskaupan toimitusketjuja. Valitut tutkimukset suodatettiin niiden merkityksellisyyden, laadun ja julkaisujen ajankohtaisuuden perusteella. Tutkielmassa havaituista hyödyistä sekä haasteista tehtiin yhteenveto, joka tarjoaa selkeän näkymän tämän katsauksen tuloksista. Tutkimuksessa havaittiin, että ennakoiva analytiikka parantaa merkittävästi toimitusketjun tehokkuutta ennustamalla kysynnän tarkasti ja optimoimalla resurssien kohdentamisen. Lisäksi ennakoiva analytiikka vahvistaa päätöksentekoa, mahdollistaen nopeamman sopeutumisen kehittyviin markkinatrendeihin. Tutkielma tunnistaa myös haasteita, kuten tietojen eheys, analyysimallien monimutkaisuus ja tarpeen datavetoiselle kulttuurille. Organisaatioiden tulee huomioida nämä haasteet ja puuttua niihin hyödyntääkseen ennakoivaa analytiikkaa tehokkaasti kestävän kilpailuedun saavuttamiseksi vähittäiskaupan alalla. As technology advances and digital options gain popularity, the retail sector is shifting towards a multichannel approach where digital and physical retail channels are merging. This shift is emphasized by an increasing focus on sustainability, now a critical requirement often reinforced by legislation. This thesis conducts a descriptive literature review to explore current literature insights into the capabilities of Predictive Analytics for enhancing both operational efficiency and sustainability within retail supply chains. The literature review was conducted using peer-reviewed scientific publications related to predictive analytics, sustainability, and retail supply chains. The selected studies were then filtered based on the recentness of the publication, relevance, and quality. The findings were organized to highlight both the benefits and challenges, providing a clear view of the results of this review. These findings demonstrate that Predictive Analytics substantially improves supply chain efficiency by forecasting demands accurately and optimizing resource allocation. Moreover, Predictive Analytics provides strong decision-making, allowing retail businesses to adapt swiftly to evolving market trends. The thesis also identifies challenges such as data integrity, the complexity of analytical models, and the need for data-driven culture. Organizations need to note these challenges and address them to leverage Predictive Analytics effectively for achieving a sustainable competitive advantage in the retail sector.
first_indexed 2024-06-10T20:00:51Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Vuorinen, Jukka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Salo, Eetu", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-06-10T12:12:21Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-06-10T12:12:21Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95711", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Teknologian kehittyess\u00e4 v\u00e4hitt\u00e4iskaupan sektori siirtyy monikanavaiseen l\u00e4hestymistapaan miss\u00e4 fyysinen ja digitaalinen kaupank\u00e4ynti sulautuu yhteen. T\u00e4t\u00e4 siirtym\u00e4\u00e4 korostaa kest\u00e4vyyden merkityksen kasvu, mit\u00e4 ohjataan usein jopa lains\u00e4\u00e4d\u00e4nn\u00f6ll\u00e4. Tutkimus toteutettiin kuvailevana kirjallisuuskatsauksena, jossa tutkittiin mit\u00e4 olemassaoleva kirjallisuus sanoo ennakoivan analytiikan kyvyst\u00e4 parantaa v\u00e4hitt\u00e4iskaupan toimitusketjun operationaalista tehokkuutta ja kest\u00e4vyyytt\u00e4. Tutkimus toteutettiin k\u00e4ytt\u00e4en vertaisarvioituja tieteellisi\u00e4 julkaisuja, jotka k\u00e4sittelev\u00e4t ennakoivaa analytiikkaa, kest\u00e4vyytt\u00e4 ja v\u00e4hitt\u00e4iskaupan toimitusketjuja. Valitut tutkimukset suodatettiin niiden merkityksellisyyden, laadun ja julkaisujen ajankohtaisuuden perusteella. Tutkielmassa havaituista hy\u00f6dyist\u00e4 sek\u00e4 haasteista tehtiin yhteenveto, joka tarjoaa selke\u00e4n n\u00e4kym\u00e4n t\u00e4m\u00e4n katsauksen tuloksista. Tutkimuksessa havaittiin, ett\u00e4 ennakoiva analytiikka parantaa merkitt\u00e4v\u00e4sti toimitusketjun tehokkuutta ennustamalla kysynn\u00e4n tarkasti ja optimoimalla resurssien kohdentamisen. Lis\u00e4ksi ennakoiva analytiikka vahvistaa p\u00e4\u00e4t\u00f6ksentekoa, mahdollistaen nopeamman sopeutumisen kehittyviin markkinatrendeihin. Tutkielma tunnistaa my\u00f6s haasteita, kuten tietojen eheys, analyysimallien monimutkaisuus ja tarpeen datavetoiselle kulttuurille. Organisaatioiden tulee huomioida n\u00e4m\u00e4 haasteet ja puuttua niihin hy\u00f6dynt\u00e4\u00e4kseen ennakoivaa analytiikkaa tehokkaasti kest\u00e4v\u00e4n kilpailuedun saavuttamiseksi v\u00e4hitt\u00e4iskaupan alalla.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "As technology advances and digital options gain popularity, the retail sector is shifting towards a multichannel approach where digital and physical retail channels are merging. This shift is emphasized by an increasing focus on sustainability, now a critical requirement often reinforced by legislation. This thesis conducts a descriptive literature review to explore current literature insights into the capabilities of Predictive Analytics for enhancing both operational efficiency and sustainability within retail supply chains. The literature review was conducted using peer-reviewed scientific publications related to predictive analytics, sustainability, and retail supply chains. The selected studies were then filtered based on the recentness of the publication, relevance, and quality. The findings were organized to highlight both the benefits and challenges, providing a clear view of the results of this review. These findings demonstrate that Predictive Analytics substantially improves supply chain efficiency by forecasting demands accurately and optimizing resource allocation. Moreover, Predictive Analytics provides strong decision-making, allowing retail businesses to adapt swiftly to evolving market trends. The thesis also identifies challenges such as data integrity, the complexity of analytical models, and the need for data-driven culture. Organizations need to note these challenges and address them to leverage Predictive Analytics effectively for achieving a sustainable competitive advantage in the retail sector.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2024-06-10T12:12:21Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-06-10T12:12:21Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "37", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "predictive analytics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "sustainability", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "demand forecasting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "retail supply chain", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "resource efficiency", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202406104482", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "toimitusketjut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "v\u00e4hitt\u00e4iskauppa", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "supply chains", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "retail trade", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimisation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_95711
language eng
last_indexed 2025-02-18T10:54:54Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/478f4902-bda0-473f-aa8a-89065a5bec2e\/download","text":"URN:NBN:fi:jyu-202406104482.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Salo, Eetu The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency predictive analytics sustainability demand forecasting retail supply chain resource efficiency Tietojärjestelmätiede Information Systems Science 601 toimitusketjut vähittäiskauppa optimointi supply chains retail trade optimisation
title The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
title_full The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
title_fullStr The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
title_full_unstemmed The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
title_short The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
title_sort role of predictive analytics in streamlining retail supply chains for enhanced sustainability and efficiency
title_txtP The Role of Predictive Analytics in Streamlining Retail Supply Chains for Enhanced Sustainability and Efficiency
topic predictive analytics sustainability demand forecasting retail supply chain resource efficiency Tietojärjestelmätiede Information Systems Science 601 toimitusketjut vähittäiskauppa optimointi supply chains retail trade optimisation
topic_facet 601 Information Systems Science Tietojärjestelmätiede demand forecasting optimisation optimointi predictive analytics resource efficiency retail supply chain retail trade supply chains sustainability toimitusketjut vähittäiskauppa
url https://jyx.jyu.fi/handle/123456789/95711 http://www.urn.fi/URN:NBN:fi:jyu-202406104482
work_keys_str_mv AT saloeetu roleofpredictiveanalyticsinstreamliningretailsupplychainsforenhancedsustainabilityandef AT saloeetu theroleofpredictiveanalyticsinstreamliningretailsupplychainsforenhancedsustainabilityan