Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques

This thesis explores how artificial intelligence (AI) techniques and machine learning (ML) algorithms can enhance adaptive anomaly detection frameworks while aiming to develop effective strategies for identifying and mitigating evolving cyberthreats. The main objective of this study is to create a u...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Verma, Dhruv
Muut tekijät: Faculty of Information Technology, Informaatioteknologian tiedekunta, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2024
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/95217
_version_ 1826225725799137280
author Verma, Dhruv
author2 Faculty of Information Technology Informaatioteknologian tiedekunta Jyväskylän yliopisto University of Jyväskylä
author_facet Verma, Dhruv Faculty of Information Technology Informaatioteknologian tiedekunta Jyväskylän yliopisto University of Jyväskylä Verma, Dhruv Faculty of Information Technology Informaatioteknologian tiedekunta Jyväskylän yliopisto University of Jyväskylä
author_sort Verma, Dhruv
datasource_str_mv jyx
description This thesis explores how artificial intelligence (AI) techniques and machine learning (ML) algorithms can enhance adaptive anomaly detection frameworks while aiming to develop effective strategies for identifying and mitigating evolving cyberthreats. The main objective of this study is to create a unified framework that reduces manual inter-vention, minimizes false positives, and offers a robust and resilient approach to threat mitigation. To collect datasets for analyzing the behavior of cyberthreats, a number of cyber-attack simulations, including threats such as - malware, data breaches, and SQL injections, were created. Additionally, malicious datasets from Kaggle were utilized to provide a larger amount of data. After normalizing the datasets, several ML algorithms were utilized to train the data and establish a threshold mechanism. This mechanism dynamically adjusts parameters corresponding to specific cyberthreats, ensuring accurate identification and mitigation. This study demonstrates how modern AI techniques can transform anomaly detection, making it more effective, time-efficient, and resource-friendly. Tämä opinnäytetyö tutkii, kuinka tekoälytekniikat (AI) ja koneoppimisalgoritmit voivat parantaa adaptiivisia poikkeamien havaitsemiskehyksiä ja pyrkiä kehittämään tehokkaita strategioita kehittyvien kyberuhkien tunnistamiseen ja lieventämiseen. Tämän tutkimuksen päätavoitteena on luoda yhtenäinen viitekehys, joka vähentää manuaalisia toimenpiteitä, minimoi vääriä positiivisia tuloksia ja tarjoaa vankan ja kestävän lähestymistavan uhkien lieventämiseen. Tietojen keräämiseksi kyberuhkien käyttäytymisen analysointia varten luotiin useita ky-berhyökkäyssimulaatioita, mukaan lukien uhkia, kuten - haittaohjelmat, tietomurrot ja SQL-injektiot. Lisäksi Kagglen haitallisia tietojoukkoja hyödynnettiin suuremman tietomäärän tuottamiseen. Datajoukkojen normalisoinnin jälkeen käytettiin useita ML-algoritmeja tietojen kouluttamiseen ja kynnysmekanismin luomiseen. Tämä mekanismi säätää dynaamisesti tiettyjä kyberuhkia vastaavia parametreja varmistaen tarkan tunnis-tamisen ja lieventämisen. Tämä tutkimus osoittaa, kuinka nykyaikaiset tekoälytekniikat voivat muuttaa poikkeamien havaitsemista tehden siitä tehokkaamman, aikatehokkaam-man ja resursseja säästävämmän.
first_indexed 2024-09-11T08:53:05Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Terziyan, Vagan", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Verma, Dhruv", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-05-27T08:52:09Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-05-27T08:52:09Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/95217", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This thesis explores how artificial intelligence (AI) techniques and machine learning (ML) algorithms can enhance adaptive anomaly detection frameworks while aiming to develop effective strategies for identifying and mitigating evolving cyberthreats. The main objective of this study is to create a unified framework that reduces manual inter-vention, minimizes false positives, and offers a robust and resilient approach to threat mitigation. \nTo collect datasets for analyzing the behavior of cyberthreats, a number of cyber-attack simulations, including threats such as - malware, data breaches, and SQL injections, were created. Additionally, malicious datasets from Kaggle were utilized to provide a larger amount of data. After normalizing the datasets, several ML algorithms were utilized to train the data and establish a threshold mechanism. This mechanism dynamically adjusts parameters corresponding to specific cyberthreats, ensuring accurate identification and mitigation. This study demonstrates how modern AI techniques can transform anomaly detection, making it more effective, time-efficient, and resource-friendly.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4 opinn\u00e4ytety\u00f6 tutkii, kuinka teko\u00e4lytekniikat (AI) ja koneoppimisalgoritmit voivat parantaa adaptiivisia poikkeamien havaitsemiskehyksi\u00e4 ja pyrki\u00e4 kehitt\u00e4m\u00e4\u00e4n tehokkaita strategioita kehittyvien kyberuhkien tunnistamiseen ja lievent\u00e4miseen. T\u00e4m\u00e4n tutkimuksen p\u00e4\u00e4tavoitteena on luoda yhten\u00e4inen viitekehys, joka v\u00e4hent\u00e4\u00e4 manuaalisia toimenpiteit\u00e4, minimoi v\u00e4\u00e4ri\u00e4 positiivisia tuloksia ja tarjoaa vankan ja kest\u00e4v\u00e4n l\u00e4hestymistavan uhkien lievent\u00e4miseen.\nTietojen ker\u00e4\u00e4miseksi kyberuhkien k\u00e4ytt\u00e4ytymisen analysointia varten luotiin useita ky-berhy\u00f6kk\u00e4yssimulaatioita, mukaan lukien uhkia, kuten - haittaohjelmat, tietomurrot ja SQL-injektiot. Lis\u00e4ksi Kagglen haitallisia tietojoukkoja hy\u00f6dynnettiin suuremman tietom\u00e4\u00e4r\u00e4n tuottamiseen. Datajoukkojen normalisoinnin j\u00e4lkeen k\u00e4ytettiin useita ML-algoritmeja tietojen kouluttamiseen ja kynnysmekanismin luomiseen. T\u00e4m\u00e4 mekanismi s\u00e4\u00e4t\u00e4\u00e4 dynaamisesti tiettyj\u00e4 kyberuhkia vastaavia parametreja varmistaen tarkan tunnis-tamisen ja lievent\u00e4misen. T\u00e4m\u00e4 tutkimus osoittaa, kuinka nykyaikaiset teko\u00e4lytekniikat voivat muuttaa poikkeamien havaitsemista tehden siit\u00e4 tehokkaamman, aikatehokkaam-man ja resursseja s\u00e4\u00e4st\u00e4v\u00e4mm\u00e4n.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2024-05-27T08:52:09Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-05-27T08:52:09Z (GMT). No. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "70", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "CC BY 4.0", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Enhancing Cybersecurity Through Adaptive Anomaly Detection\tUsing Modern AI Techniques", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202405273981", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Artificial Intelligence", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://creativecommons.org/licenses/by/4.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_95217
language eng
last_indexed 2025-02-18T10:56:55Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/1b592090-4bf6-41e1-b313-601143a2a49a\/download","text":"URN:NBN:fi:jyu-202405273981.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Verma, Dhruv Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques Artificial Intelligence
title Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
title_full Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
title_fullStr Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
title_full_unstemmed Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
title_short Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
title_sort enhancing cybersecurity through adaptive anomaly detection using modern ai techniques
title_txtP Enhancing Cybersecurity Through Adaptive Anomaly Detection Using Modern AI Techniques
topic Artificial Intelligence
topic_facet Artificial Intelligence
url https://jyx.jyu.fi/handle/123456789/95217 http://www.urn.fi/URN:NBN:fi:jyu-202405273981
work_keys_str_mv AT vermadhruv enhancingcybersecuritythroughadaptiveanomalydetectionusingmodernaitechniques