First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection

Bacteriophages, or phages, are viruses that infect bacteria. Recently, many megaphages with large (over 500 kilo base pairs) genomes have been discovered. Metagenomic analyses show that several phages, including some megaphages, encode a CRISPR-Cas system, an adaptive immune system commonly associat...

Full description

Bibliographic Details
Main Author: Niemi, Meeri
Other Authors: Faculty of Sciences, Matemaattis-luonnontieteellinen tiedekunta, Department of Biological and Environmental Science, Bio- ja ympäristötieteiden laitos, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:eng
Published: 2024
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/94810
_version_ 1826225785932873728
author Niemi, Meeri
author2 Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Biological and Environmental Science Bio- ja ympäristötieteiden laitos University of Jyväskylä Jyväskylän yliopisto
author_facet Niemi, Meeri Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Biological and Environmental Science Bio- ja ympäristötieteiden laitos University of Jyväskylä Jyväskylän yliopisto Niemi, Meeri Faculty of Sciences Matemaattis-luonnontieteellinen tiedekunta Department of Biological and Environmental Science Bio- ja ympäristötieteiden laitos University of Jyväskylä Jyväskylän yliopisto
author_sort Niemi, Meeri
datasource_str_mv jyx
description Bacteriophages, or phages, are viruses that infect bacteria. Recently, many megaphages with large (over 500 kilo base pairs) genomes have been discovered. Metagenomic analyses show that several phages, including some megaphages, encode a CRISPR-Cas system, an adaptive immune system commonly associated with prokaryotes. These systems consist of CRISPR repeat-spacer arrays and Cas proteins that enable the system to target foreign genetic material in a sequence-specific manner. Some phage-encoded CRISPR-Cas systems have been shown to target host bacterium genome, while others are thought to target competing phages, but empirical evidence is scarce. This research seeks to elucidate the functionality of CRISPR-Cas systems in megaphages, which often exhibit incomplete systems with unclear purpose. In this study, five megaphages (genome size over 600 kilo base pairs) isolated from Lake Jyväsjärvi were studied. Phage host range was determined with titration experiments, and the phages were found to primarily infect species of Flavobacterium. The life cycle of phage Elf16 was determined by measuring host optical density, calculating plaque forming units during infection, and by performing an adsorption to host test. The Elf16 life cycle was found to be lytic, with lysis occurring gradually and starting at roughly three hours post-infection. Thin section samples of the phage infection were imaged using transmission electron microscopy, and the phage particles were shown to be large and have a contractile tail. Images also depict the Elf16 life cycle, which matches the life cycle demonstrated by measuring the optical density and plaque forming units. Elf16 genome was analysed, but no match was found between the CRISPR spacers of the phage and the genome of its isolation host. It is possible that the purpose of the phage CRIPSR-system is to attack host genome, but it is not a requisite for a successful infection. To assess the functionality of the Elf16 CRISPR-Cas system, Cas9 gene expression was measured using qPCR. The findings suggested significant Cas9 expression during early stages of infection, therefore hinting at a potentially functional system. Bakteriofagit eli faagit ovat viruksia, jotka infektoivat bakteereja. Viime aikoina on löydetty useita megafaageja, joilla on suuri (yli 500 kiloemäsparia) genomi. Metagenomianalyyseissä on löydetty faageja, myös joitakin megafaageja, joilla on CRISPR-Cas järjestelmä, adaptiivinen immuunijärjestelmä, joka on yleinen esitumallisilla. CRISPR-järjestelmä koostuu CRISPR-sekvenssistä ja Cas-geeneistä, joiden avulla bakteeri voi tunnistaa ja tuhota vierasta geneettistä materiaalia sekvenssin tarkkuudella. Tämä tutkimus pyrkii selvittämään CRISPR-järjestelmän toimivuutta megafaageissa. Niiden CRISPR-järjestelmä on usein vajavainen, ja sen toimintaa ei juurikaan tunneta. Joidenkin faagien CRISPR-järjestelmien on osoitettu tuhoavan isäntäbakteerien genomia, ja joidenkin arvellaan tuhoavan kilpailevien faagien genomia, mutta empiirinen näyttö on vähäistä. Tässä työssä tutkittiin viittä Jyväsjärvestä eristettyä megafaagia (genomi yli 600 kiloemäsparia). Faagien isäntäkirjo selvitettiin tippatitrauksella. Todettiin, että faagit infektoivat pääasiassa eri Flavobacterium lajeja. Faagin Elf16 elinkierto selvitettiin mittaamalla optista tiheyttä, laskemalla plakin muodostavien yksiköiden määrä infektion aikana ja suorittamalla adsorptiokoe. Faagin elinkierto osoitettiin lyyttiseksi. Hitaasti etenevä lyysis alkaa noin kolme tuntia infektion alun jälkeen. Infektion aikana otetuista näytteistä tehtiin ohutleikkeitä, jotka kuvattiin läpäisyelektronimikroskoopilla. Faagipartikkelit olivat suuria, ja ne omasivat kontraktiilin hännän. Kuvat osoittavat myös faagin elinkierron, joka täsmää muissa mittauksissa todettuun kiertoon. Faagin Elf16 genomia analysoitiin, mutta ei havaittu vastaavuutta faagin CRISPR spacereiden ja isäntäbakteerin genomin välillä. On mahdollista, että faagin CRISPR-järjestelmän tarkoitus on leikata isännän genomia, mutta se ei kuitenkaan ole edellytys onnistuneelle infektiolle. Faagin Elf16 CRISPR-järjestelmän toimivuutta testattiin mittaamalla Cas9-geenin ilmentymistä qPCR:n avulla. Cas9:ää ilmentyy infektion alkuvaiheessa, mikä saattaa viitata toiminalliseen CRISPR-Cas järjestelmään.
first_indexed 2024-09-11T08:52:54Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Laanto, Elina", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Sundberg, Lotta-Riina", "language": null, "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Niemi, Meeri", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2024-05-14T07:04:01Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2024-05-14T07:04:01Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2024", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/94810", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Bacteriophages, or phages, are viruses that infect bacteria. Recently, many megaphages with large (over 500 kilo base pairs) genomes have been discovered. Metagenomic analyses show that several phages, including some megaphages, encode a CRISPR-Cas system, an adaptive immune system commonly associated with prokaryotes. These systems consist of CRISPR repeat-spacer arrays and Cas proteins that enable the system to target foreign genetic material in a sequence-specific manner. Some phage-encoded CRISPR-Cas systems have been shown to target host bacterium genome, while others are thought to target competing phages, but empirical evidence is scarce. This research seeks to elucidate the functionality of CRISPR-Cas systems in megaphages, which often exhibit incomplete systems with unclear purpose. In this study, five megaphages (genome size over 600 kilo base pairs) isolated from Lake Jyv\u00e4sj\u00e4rvi were studied. Phage host range was determined with titration experiments, and the phages were found to primarily infect species of Flavobacterium. The life cycle of phage Elf16 was determined by measuring host optical density, calculating plaque forming units during infection, and by performing an adsorption to host test. The Elf16 life cycle was found to be lytic, with lysis occurring gradually and starting at roughly three hours post-infection. Thin section samples of the phage infection were imaged using transmission electron microscopy, and the phage particles were shown to be large and have a contractile tail. Images also depict the Elf16 life cycle, which matches the life cycle demonstrated by measuring the optical density and plaque forming units. Elf16 genome was analysed, but no match was found between the CRISPR spacers of the phage and the genome of its isolation host. It is possible that the purpose of the phage CRIPSR-system is to attack host genome, but it is not a requisite for a successful infection. To assess the functionality of the Elf16 CRISPR-Cas system, Cas9 gene expression was measured using qPCR. The findings suggested significant Cas9 expression during early stages of infection, therefore hinting at a potentially functional system.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Bakteriofagit eli faagit ovat viruksia, jotka infektoivat bakteereja. Viime aikoina on l\u00f6ydetty useita megafaageja, joilla on suuri (yli 500 kiloem\u00e4sparia) genomi. Metagenomianalyyseiss\u00e4 on l\u00f6ydetty faageja, my\u00f6s joitakin megafaageja, joilla on CRISPR-Cas j\u00e4rjestelm\u00e4, adaptiivinen immuunij\u00e4rjestelm\u00e4, joka on yleinen esitumallisilla. CRISPR-j\u00e4rjestelm\u00e4 koostuu CRISPR-sekvenssist\u00e4 ja Cas-geeneist\u00e4, joiden avulla bakteeri voi tunnistaa ja tuhota vierasta geneettist\u00e4 materiaalia sekvenssin tarkkuudella. T\u00e4m\u00e4 tutkimus pyrkii selvitt\u00e4m\u00e4\u00e4n CRISPR-j\u00e4rjestelm\u00e4n toimivuutta megafaageissa. Niiden CRISPR-j\u00e4rjestelm\u00e4 on usein vajavainen, ja sen toimintaa ei juurikaan tunneta. Joidenkin faagien CRISPR-j\u00e4rjestelmien on osoitettu tuhoavan is\u00e4nt\u00e4bakteerien genomia, ja joidenkin arvellaan tuhoavan kilpailevien faagien genomia, mutta empiirinen n\u00e4ytt\u00f6 on v\u00e4h\u00e4ist\u00e4. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 tutkittiin viitt\u00e4 Jyv\u00e4sj\u00e4rvest\u00e4 eristetty\u00e4 megafaagia (genomi yli 600 kiloem\u00e4sparia). Faagien is\u00e4nt\u00e4kirjo selvitettiin tippatitrauksella. Todettiin, ett\u00e4 faagit infektoivat p\u00e4\u00e4asiassa eri Flavobacterium lajeja. Faagin Elf16 elinkierto selvitettiin mittaamalla optista tiheytt\u00e4, laskemalla plakin muodostavien yksik\u00f6iden m\u00e4\u00e4r\u00e4 infektion aikana ja suorittamalla adsorptiokoe. Faagin elinkierto osoitettiin lyyttiseksi. Hitaasti etenev\u00e4 lyysis alkaa noin kolme tuntia infektion alun j\u00e4lkeen. Infektion aikana otetuista n\u00e4ytteist\u00e4 tehtiin ohutleikkeit\u00e4, jotka kuvattiin l\u00e4p\u00e4isyelektronimikroskoopilla. Faagipartikkelit olivat suuria, ja ne omasivat kontraktiilin h\u00e4nn\u00e4n. Kuvat osoittavat my\u00f6s faagin elinkierron, joka t\u00e4sm\u00e4\u00e4 muissa mittauksissa todettuun kiertoon. Faagin Elf16 genomia analysoitiin, mutta ei havaittu vastaavuutta faagin CRISPR spacereiden ja is\u00e4nt\u00e4bakteerin genomin v\u00e4lill\u00e4. On mahdollista, ett\u00e4 faagin CRISPR-j\u00e4rjestelm\u00e4n tarkoitus on leikata is\u00e4nn\u00e4n genomia, mutta se ei kuitenkaan ole edellytys onnistuneelle infektiolle. Faagin Elf16 CRISPR-j\u00e4rjestelm\u00e4n toimivuutta testattiin mittaamalla Cas9-geenin ilmentymist\u00e4 qPCR:n avulla. Cas9:\u00e4\u00e4 ilmentyy infektion alkuvaiheessa, mik\u00e4 saattaa viitata toiminalliseen CRISPR-Cas j\u00e4rjestelm\u00e4\u00e4n.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2024-05-14T07:04:01Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2024-05-14T07:04:01Z (GMT). No. of bitstreams: 0\n Previous issue date: 2024", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "60", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "flavobacteria", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "host-phage interaction", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "host range", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "megaphage", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "phage morphology", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "viral life cycle", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202405143578", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Cell and molecular biology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Solu- ja molekyylibiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4013", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bakteriofagit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "virukset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bakteerit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "infektiot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "is\u00e4nt\u00e4solut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "elinkaariarviointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bacteriophages", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "viruses", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bacteria", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "infections", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "host cells", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "life cycle analysis", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_94810
language eng
last_indexed 2025-02-18T10:56:53Z
main_date 2024-01-01T00:00:00Z
main_date_str 2024
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/ac6c4028-d3cf-4279-af8c-a82bb7c1f45d\/download","text":"URN:NBN:fi:jyu-202405143578.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2024
record_format qdc
source_str_mv jyx
spellingShingle Niemi, Meeri First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection flavobacteria host-phage interaction host range megaphage phage morphology viral life cycle Cell and molecular biology Solu- ja molekyylibiologia 4013 bakteriofagit virukset bakteerit infektiot isäntäsolut elinkaariarviointi bacteriophages viruses bacteria infections host cells life cycle analysis
title First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
title_full First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
title_fullStr First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
title_full_unstemmed First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
title_short First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
title_sort first evidence of cas9 expression during crispr cas containing megaphage infection
title_txtP First evidence of Cas9 expression during CRISPR-Cas containing megaphage infection
topic flavobacteria host-phage interaction host range megaphage phage morphology viral life cycle Cell and molecular biology Solu- ja molekyylibiologia 4013 bakteriofagit virukset bakteerit infektiot isäntäsolut elinkaariarviointi bacteriophages viruses bacteria infections host cells life cycle analysis
topic_facet 4013 Cell and molecular biology Solu- ja molekyylibiologia bacteria bacteriophages bakteerit bakteriofagit elinkaariarviointi flavobacteria host cells host range host-phage interaction infections infektiot isäntäsolut life cycle analysis megaphage phage morphology viral life cycle virukset viruses
url https://jyx.jyu.fi/handle/123456789/94810 http://www.urn.fi/URN:NBN:fi:jyu-202405143578
work_keys_str_mv AT niemimeeri firstevidenceofcas9expressionduringcrisprcascontainingmegaphageinfection