Towards data-driven marketing organization

Tämä tutkimus syventyy haasteisiin ja ratkaisuihin, jotka liittyvät markkinointimix mallinnuksen (MMM) käyttöönottoon organisaatioissa, erityisesti rajoittavien yksityisyydensuojalakien aikana, jotka vaikuttavat nykyisiin markkinoinnin tehokkuuden mittausmenetelmiin. Kattavan monimenetelmällisen läh...

Full description

Bibliographic Details
Main Author: Rasi, Juha
Other Authors: Kauppakorkeakoulu, School of Business and Economics, Taloustieteet, Business and Economics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/92422
_version_ 1826225765830623232
author Rasi, Juha
author2 Kauppakorkeakoulu School of Business and Economics Taloustieteet Business and Economics Jyväskylän yliopisto University of Jyväskylä
author_facet Rasi, Juha Kauppakorkeakoulu School of Business and Economics Taloustieteet Business and Economics Jyväskylän yliopisto University of Jyväskylä Rasi, Juha Kauppakorkeakoulu School of Business and Economics Taloustieteet Business and Economics Jyväskylän yliopisto University of Jyväskylä
author_sort Rasi, Juha
datasource_str_mv jyx
description Tämä tutkimus syventyy haasteisiin ja ratkaisuihin, jotka liittyvät markkinointimix mallinnuksen (MMM) käyttöönottoon organisaatioissa, erityisesti rajoittavien yksityisyydensuojalakien aikana, jotka vaikuttavat nykyisiin markkinoinnin tehokkuuden mittausmenetelmiin. Kattavan monimenetelmällisen lähestymistavan avulla tutkimus tarjoaa syvällisen tarkastelun haasteista, joita kohdattiin aikaisemmassa MMM:n käyttöönotto yrittämisessä yksityisessä suomalaisessa terveydenhuoltoyrityksessä. Tämä lähestymistapa mahdollisti näkemysten keräämisen ennen mallinnusta ja näiden näkemysten soveltamisen MMM:ssa ja mallinnuksen tulosten käsittelyn seurantahaastatteluissa. Tutkimus paljastaa muutamia kriittisiä organisaation haasteita, kuten vahvan projektisitoutumisen tarpeen, riittävän resurssien allokoinnin ja selkeiden tavoitteiden asettamisen. Lisäksi tutkimuksessa löytyi teknisiä haasteita, jotka sisältävät mallinnukseen käytettävän datan määrän ja laadun. Löydökset, jotka on johdettu tästä menetelmällisestä lähestymistavasta, tarjoavat käytännöllisiä suosituksia MMM:n tehokkaaseen integrointiin organisaation päätöksentekoprosesseihin. Nämä suositukset käsittelevät sekä ihmisiä että teknisiä ulottuvuuksia, varmistaen kattavan strategian monimutkaisten analyysityökalujen käyttöönotolle. Tutkimus tekee teoreettisia kontribuutioita korostamalla organisaation ominaisuuksien, kuten taitavien henkilöiden, datavetoisen kulttuurin ja hyvin määriteltyjen prosessien tärkeyttä edistyneiden analyyttisten menetelmien, kuten MMM:n, onnistuneessa integroinnissa. Se tarjoaa myös empiiristä validointia MMM:n tehokkuudesta todellisissa markkinointiskenaarioissa. Teoreettisen ja käytännöllisen maailman välisen kuilun ylittävänä, tutkimus laajentaa ymmärrystä MMM:n potentiaalista markkinointidatan analysoinnissa ja tarjoaa arvokkaita näkemyksiä sekä akateemisille tutkijoille että käytännön ammattilaisille. Tämä tutkimus esittää empiirisiä todisteita MMM:n käytännön toteuttamisesta, antaen tuloksia sekä akateemiseen tutkimukseen että käytännön sovelluksiin. This study delves into the challenges and solutions associated with implementing marketing-mix modeling (MMM) within organizations, especially under the complexities of restrictive privacy laws affecting current marketing effectiveness measurement approaches. Using a comprehensive mixed-method approach encompassing an interview-modeling-interview sequence, the research examines the challenges encountered in a prior MMM implementation attempt by a private Finnish healthcare company. This approach allowed for the extraction of valuable insights through initial interviews, the application of these insights within a practical MMM framework, and the subsequent validation of findings through follow-up interviews. The study uncovers critical organizational challenges, such as the need for strong project commitment, adequate resource allocation, and clear goal setting, alongside technical challenges, including data availability and quality. The findings from this methodological approach offer pragmatic recommendations for effectively integrating MMM into organizational decision-making processes. These recommendations address human and technical dimensions, ensuring a comprehensive strategy for implementing complex analytical tools. This study makes theoretical contributions by emphasizing the importance of organizational qualities, such as skilled personnel, data-driven culture, and well-defined processes, for successfully adopting advanced analytical methods like MMM. It also provides empirical validation of MMM's effectiveness in real-world marketing scenarios. By bridging the theoretical and practical realms, the research enhances understanding of MMM's potential in marketing data analysis and offers valuable insights for academia and practitioners. Filling a notable gap in academic literature, this research presents empirical evidence on the practical implementation of MMM, contributing substantially to academic research and practical applications in data analytics and marketing.
first_indexed 2023-12-20T21:05:03Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "R\u00f6nkk\u00f6, Mikko", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Rasi, Juha", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-12-20T10:00:57Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-12-20T10:00:57Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/92422", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4 tutkimus syventyy haasteisiin ja ratkaisuihin, jotka liittyv\u00e4t markkinointimix mallinnuksen (MMM) k\u00e4ytt\u00f6\u00f6nottoon organisaatioissa, erityisesti rajoittavien yksityisyydensuojalakien aikana, jotka vaikuttavat nykyisiin markkinoinnin tehokkuuden mittausmenetelmiin. Kattavan monimenetelm\u00e4llisen l\u00e4hestymistavan avulla tutkimus tarjoaa syv\u00e4llisen tarkastelun haasteista, joita kohdattiin aikaisemmassa MMM:n k\u00e4ytt\u00f6\u00f6notto yritt\u00e4misess\u00e4 yksityisess\u00e4 suomalaisessa terveydenhuoltoyrityksess\u00e4. T\u00e4m\u00e4 l\u00e4hestymistapa mahdollisti n\u00e4kemysten ker\u00e4\u00e4misen ennen mallinnusta ja n\u00e4iden n\u00e4kemysten soveltamisen MMM:ssa ja mallinnuksen tulosten k\u00e4sittelyn seurantahaastatteluissa.\nTutkimus paljastaa muutamia kriittisi\u00e4 organisaation haasteita, kuten vahvan projektisitoutumisen tarpeen, riitt\u00e4v\u00e4n resurssien allokoinnin ja selkeiden tavoitteiden asettamisen. Lis\u00e4ksi tutkimuksessa l\u00f6ytyi teknisi\u00e4 haasteita, jotka sis\u00e4lt\u00e4v\u00e4t mallinnukseen k\u00e4ytett\u00e4v\u00e4n datan m\u00e4\u00e4r\u00e4n ja laadun. L\u00f6yd\u00f6kset, jotka on johdettu t\u00e4st\u00e4 menetelm\u00e4llisest\u00e4 l\u00e4hestymistavasta, tarjoavat k\u00e4yt\u00e4nn\u00f6llisi\u00e4 suosituksia MMM:n tehokkaaseen integrointiin organisaation p\u00e4\u00e4t\u00f6ksentekoprosesseihin. N\u00e4m\u00e4 suositukset k\u00e4sittelev\u00e4t sek\u00e4 ihmisi\u00e4 ett\u00e4 teknisi\u00e4 ulottuvuuksia, varmistaen kattavan strategian monimutkaisten analyysity\u00f6kalujen k\u00e4ytt\u00f6\u00f6notolle.\nTutkimus tekee teoreettisia kontribuutioita korostamalla organisaation ominaisuuksien, kuten taitavien henkil\u00f6iden, datavetoisen kulttuurin ja hyvin m\u00e4\u00e4riteltyjen prosessien t\u00e4rkeytt\u00e4 edistyneiden analyyttisten menetelmien, kuten MMM:n, onnistuneessa integroinnissa. Se tarjoaa my\u00f6s empiirist\u00e4 validointia MMM:n tehokkuudesta todellisissa markkinointiskenaarioissa. Teoreettisen ja k\u00e4yt\u00e4nn\u00f6llisen maailman v\u00e4lisen kuilun ylitt\u00e4v\u00e4n\u00e4, tutkimus laajentaa ymm\u00e4rryst\u00e4 MMM:n potentiaalista markkinointidatan analysoinnissa ja tarjoaa arvokkaita n\u00e4kemyksi\u00e4 sek\u00e4 akateemisille tutkijoille ett\u00e4 k\u00e4yt\u00e4nn\u00f6n ammattilaisille. T\u00e4m\u00e4 tutkimus esitt\u00e4\u00e4 empiirisi\u00e4 todisteita MMM:n k\u00e4yt\u00e4nn\u00f6n toteuttamisesta, antaen tuloksia sek\u00e4 akateemiseen tutkimukseen ett\u00e4 k\u00e4yt\u00e4nn\u00f6n sovelluksiin.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This study delves into the challenges and solutions associated with implementing marketing-mix modeling (MMM) within organizations, especially under the complexities of restrictive privacy laws affecting current marketing effectiveness measurement approaches. Using a comprehensive mixed-method approach encompassing an interview-modeling-interview sequence, the research examines the challenges encountered in a prior MMM implementation attempt by a private Finnish healthcare company. This approach allowed for the extraction of valuable insights through initial interviews, the application of these insights within a practical MMM framework, and the subsequent validation of findings through follow-up interviews.\nThe study uncovers critical organizational challenges, such as the need for strong project commitment, adequate resource allocation, and clear goal setting, alongside technical challenges, including data availability and quality. The findings from this methodological approach offer pragmatic recommendations for effectively integrating MMM into organizational decision-making processes. These recommendations address human and technical dimensions, ensuring a comprehensive strategy for implementing complex analytical tools.\nThis study makes theoretical contributions by emphasizing the importance of organizational qualities, such as skilled personnel, data-driven culture, and well-defined processes, for successfully adopting advanced analytical methods like MMM. It also provides empirical validation of MMM's effectiveness in real-world marketing scenarios. By bridging the theoretical and practical realms, the research enhances understanding of MMM's potential in marketing data analysis and offers valuable insights for academia and practitioners. Filling a notable gap in academic literature, this research presents empirical evidence on the practical implementation of MMM, contributing substantially to academic research and practical applications in data analytics and marketing.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2023-12-20T10:00:57Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-12-20T10:00:57Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "89", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "marketing-mix modeling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "marketing measurement", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "data-driven organization", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Towards data-driven marketing organization", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202312208416", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4 University School of Business and Economics", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4n yliopiston kauppakorkeakoulu", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Taloustieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Business and Economics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Yritt\u00e4jyys", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Entrepreneurship", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "student", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "20422", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "markkinointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "marketing", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_92422
language eng
last_indexed 2025-02-18T10:54:22Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e24ba993-0ff8-4ec2-bd2c-2f565dc37f49\/download","text":"URN:NBN:fi:jyu-202312208416.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Rasi, Juha Towards data-driven marketing organization marketing-mix modeling marketing measurement data-driven organization Yrittäjyys Entrepreneurship 20422 markkinointi marketing
title Towards data-driven marketing organization
title_full Towards data-driven marketing organization
title_fullStr Towards data-driven marketing organization Towards data-driven marketing organization
title_full_unstemmed Towards data-driven marketing organization Towards data-driven marketing organization
title_short Towards data-driven marketing organization
title_sort towards data driven marketing organization
title_txtP Towards data-driven marketing organization
topic marketing-mix modeling marketing measurement data-driven organization Yrittäjyys Entrepreneurship 20422 markkinointi marketing
topic_facet 20422 Entrepreneurship Yrittäjyys data-driven organization marketing marketing measurement marketing-mix modeling markkinointi
url https://jyx.jyu.fi/handle/123456789/92422 http://www.urn.fi/URN:NBN:fi:jyu-202312208416
work_keys_str_mv AT rasijuha towardsdatadrivenmarketingorganization