The intersection of artificial intelligence and business intelligence a systematic mapping study

The research fields artificial intelligence and business intelligence have been growing in popularity in recent years. In the modern digital landscape, the data is continuously increasing. Traditional BI tools are not designed to handle large volumes of data. The integration of AI into BI can mitiga...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Bratu, Milan
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2023
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/92346
_version_ 1828193045267349504
author Bratu, Milan
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Bratu, Milan Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Bratu, Milan Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Bratu, Milan
datasource_str_mv jyx
description The research fields artificial intelligence and business intelligence have been growing in popularity in recent years. In the modern digital landscape, the data is continuously increasing. Traditional BI tools are not designed to handle large volumes of data. The integration of AI into BI can mitigate this problem. By extracting value from unstructured data with AI and BI, organisations can be more productive, make better decisions, understand market conditions. The combination of AI and BI can be highly beneficial for companies. However, the combination of the research fields is relatively new and mapping studies have been absent so far. This thesis contributes to this research gap. In this thesis a systematic mapping study has been conducted on the two research themes artificial intelligence and business intelligence. The goal of the study was to provide a comprehensive understanding/overview of the existing research landscape, research trends, and identification of potential areas of future exploration in the domain of AI-BI. The study collected 121 accepted articles from numerous journals and conferences, revealing a fragmented yet evolving research landscape with no dominant methodologies. The findings highlight key research gaps, particularly in validation research and AI ethics within the AI-BI domain. The study also emphasizes the significant academic implications of AI and BI integration, including the need for interdisciplinary research approaches and standardized methodologies. Industry implications point towards leveraging AI for enhanced predictive analytics and decision-making in diverse sectors such as retail, e-commerce, healthcare, and finance. These insights are critical for informing future research directions, shaping industry practices, and guiding educational strategies in the rapidly advancing field of AI and BI.
first_indexed 2023-12-15T21:00:48Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Taipalus, Toni", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Bratu, Milan", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-12-15T09:43:23Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-12-15T09:43:23Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/92346", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The research fields artificial intelligence and business intelligence have been growing in popularity in recent years. In the modern digital landscape, the data is continuously increasing. Traditional BI tools are not designed to handle large volumes of data. The integration of AI into BI can mitigate this problem. By extracting value from unstructured data with AI and BI, organisations can be more productive, make better decisions, understand market conditions. The combination of AI and BI can be highly beneficial for companies. However, the combination of the research fields is relatively new and mapping studies have been absent so far. This thesis contributes to this research gap. In this thesis a systematic mapping study has been conducted on the two research themes artificial intelligence and business intelligence. The goal of the study was to provide a comprehensive understanding/overview of the existing research landscape, research trends, and identification of potential areas of future exploration in the domain of AI-BI. The study collected 121 accepted articles from numerous journals and conferences, revealing a fragmented yet evolving research landscape with no dominant methodologies. The findings highlight key research gaps, particularly in validation research and AI ethics within the AI-BI domain. The study also emphasizes the significant academic implications of AI and BI integration, including the need for interdisciplinary research approaches and standardized methodologies. Industry implications point towards leveraging AI for enhanced predictive analytics and decision-making in diverse sectors such as retail, e-commerce, healthcare, and finance. These insights are critical for informing future research directions, shaping industry practices, and guiding educational strategies in the rapidly advancing field of AI and BI.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2023-12-15T09:43:23Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-12-15T09:43:23Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "70", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "The intersection of artificial intelligence and business intelligence : a systematic mapping study", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202312158339", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "business intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "business intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_92346
language eng
last_indexed 2025-03-31T20:00:58Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2b83454d-bf89-4f71-89a0-998914f64c85\/download","text":"URN:NBN:fi:jyu-202312158339.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Bratu, Milan The intersection of artificial intelligence and business intelligence : a systematic mapping study Tietojärjestelmätiede Information Systems Science 601 tekoäly koneoppiminen business intelligence artificial intelligence machine learning
title The intersection of artificial intelligence and business intelligence : a systematic mapping study
title_full The intersection of artificial intelligence and business intelligence : a systematic mapping study
title_fullStr The intersection of artificial intelligence and business intelligence : a systematic mapping study The intersection of artificial intelligence and business intelligence : a systematic mapping study
title_full_unstemmed The intersection of artificial intelligence and business intelligence : a systematic mapping study The intersection of artificial intelligence and business intelligence : a systematic mapping study
title_short The intersection of artificial intelligence and business intelligence
title_sort intersection of artificial intelligence and business intelligence a systematic mapping study
title_sub a systematic mapping study
title_txtP The intersection of artificial intelligence and business intelligence : a systematic mapping study
topic Tietojärjestelmätiede Information Systems Science 601 tekoäly koneoppiminen business intelligence artificial intelligence machine learning
topic_facet 601 Information Systems Science Tietojärjestelmätiede artificial intelligence business intelligence koneoppiminen machine learning tekoäly
url https://jyx.jyu.fi/handle/123456789/92346 http://www.urn.fi/URN:NBN:fi:jyu-202312158339
work_keys_str_mv AT bratumilan intersectionofartificialintelligenceandbusinessintelligenceasystematicmappingstudy AT bratumilan theintersectionofartificialintelligenceandbusinessintelligenceasystematicmappingstudy