Identifying and forecasting thunderstorms using weather radar data and machine learning

Methods for nowcasting lightning using weather radar data were developed using machine learning models. Reflectivity was selected as the main feature for the prediction. The purpose was to examine if machine learning applications could be used to nowcast thunderstorms with minimal data sets. The emp...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Huttunen, Joona
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2023
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/92229
_version_ 1826225699233464320
author Huttunen, Joona
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Huttunen, Joona Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Huttunen, Joona Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Huttunen, Joona
datasource_str_mv jyx
description Methods for nowcasting lightning using weather radar data were developed using machine learning models. Reflectivity was selected as the main feature for the prediction. The purpose was to examine if machine learning applications could be used to nowcast thunderstorms with minimal data sets. The emphasis was to find out a model which is based on binary image classification and doesn’t require large sets of training data to work sufficiently. Convolutional neural network was the first choice. Accuracy for the model was 0.83. Another approach was made using random forest model. Precision for class 0 (no lightning) was 0.52, and for class (recorded lightning) 1, 0.90 and with total accuracy of 0.88 To improve the sets more features should be used and possibly larger data sets.
first_indexed 2023-12-08T21:00:27Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "M\u00e4kel\u00e4, Antti", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Miettinen, Arttu", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Pulkkinen, Seppo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Huttunen, Joona", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-12-08T06:53:43Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-12-08T06:53:43Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/92229", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Methods for nowcasting lightning using weather radar data were developed using machine learning models. Reflectivity was selected as the main feature for the prediction. The purpose was to examine if machine learning applications could be used to nowcast thunderstorms with minimal data sets. The emphasis was to find out a model which is based on binary image classification and doesn\u2019t require large sets of training data to work sufficiently. Convolutional neural network was the first choice. Accuracy for the model was 0.83. Another approach was made using random forest model. Precision for class 0 (no lightning) was 0.52, and for class (recorded lightning) 1, 0.90 and with total accuracy of 0.88 To improve the sets more features should be used and possibly larger data sets.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-12-08T06:53:43Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-12-08T06:53:43Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "59", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "nowcasting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Identifying and forecasting thunderstorms using weather radar data and machine learning", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202312088228", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "public", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "student", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ilmakeh\u00e4", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "salamat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "luokitus (toiminta)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4\u00e4nennustus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ukkonen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "atmosphere (earth)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lightnings", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "classification", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "weather forecasting", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "thunder", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_92229
language eng
last_indexed 2025-02-18T10:54:46Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2f265c2c-b095-4f54-bddc-56f93cd735e1\/download","text":"URN:NBN:fi:jyu-202312088228.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Huttunen, Joona Identifying and forecasting thunderstorms using weather radar data and machine learning nowcasting Fysiikka Physics 4021 ilmakehä salamat luokitus (toiminta) koneoppiminen säänennustus ukkonen atmosphere (earth) lightnings classification machine learning weather forecasting thunder
title Identifying and forecasting thunderstorms using weather radar data and machine learning
title_full Identifying and forecasting thunderstorms using weather radar data and machine learning
title_fullStr Identifying and forecasting thunderstorms using weather radar data and machine learning Identifying and forecasting thunderstorms using weather radar data and machine learning
title_full_unstemmed Identifying and forecasting thunderstorms using weather radar data and machine learning Identifying and forecasting thunderstorms using weather radar data and machine learning
title_short Identifying and forecasting thunderstorms using weather radar data and machine learning
title_sort identifying and forecasting thunderstorms using weather radar data and machine learning
title_txtP Identifying and forecasting thunderstorms using weather radar data and machine learning
topic nowcasting Fysiikka Physics 4021 ilmakehä salamat luokitus (toiminta) koneoppiminen säänennustus ukkonen atmosphere (earth) lightnings classification machine learning weather forecasting thunder
topic_facet 4021 Fysiikka Physics atmosphere (earth) classification ilmakehä koneoppiminen lightnings luokitus (toiminta) machine learning nowcasting salamat säänennustus thunder ukkonen weather forecasting
url https://jyx.jyu.fi/handle/123456789/92229 http://www.urn.fi/URN:NBN:fi:jyu-202312088228
work_keys_str_mv AT huttunenjoona identifyingandforecastingthunderstormsusingweatherradardataandmachinelearning