Dosimetry study in an X-ray irradiator Monte Carlo simulations and experimental results on radio-photoluminescence samples

Matter’s exposure to ionizing radiations leads to a variety of possible interactions. Depending on the specific interaction type, energy can be deposited into matter via different mechanisms. The quantification of the absorbed dose in matter is crucial to monitor the radiation levels and asses ra...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Alem, Abrham
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2023
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/89326
_version_ 1828193043907346432
author Alem, Abrham
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Alem, Abrham Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Alem, Abrham Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Alem, Abrham
datasource_str_mv jyx
description Matter’s exposure to ionizing radiations leads to a variety of possible interactions. Depending on the specific interaction type, energy can be deposited into matter via different mechanisms. The quantification of the absorbed dose in matter is crucial to monitor the radiation levels and asses radiation effects in matter in different application areas such as radiation therapy, particle accelerators, space applications, and high-energy nuclear radiation facilities. The stochastic nature of radiation-matter interaction often requires the use of Monte Carlo tools in dosimetry applications. In the present work, a commercial X-ray irradiator is modeled using PHITS general Monte Carlo tool, aiming at verifying the possibility of using it for the irradiation of various types of macroscopic samples at high doses, ranging between the kGy and the MGy levels. Simulated particle fluence spectra evidence that the effect of the Be exit window, often included in the X-ray tube design as a first filter and different additional thicknesses of Al and Cu filters can be effectively used to attenuate low energy photons, often responsible for high dose inhomogeneities in thick samples. To assess the feasibility of using the available X-ray spectra for the irradiation of different samples having thicknesses up to several millimetres, the absorbed dose across the sample’s depth for different materials such as Radio Photoluminescent (RPL) glass dosimeters, silica for comparison purposes and water as reference was calculated using PHITS, with a sample depth spatial resolution of 0.1 mm and 10 µm. The homogeneity of the absorbed dose in the RPL dosimeter volume can be improved by the use of appropriate types of filters and it is found that 1.5 mm, 3 mm thick Al and 1.5 mm thick Cu filters can improve the dose homogeneity to 30 %, 15 %, and 8 % deviation from the average dose value respectively in the selected samples. By using a combination of the readout of PTW soft X-ray ionization chamber, normally used for dose rate calibration in the irradiation facility, and the realized simulations, the absorbed dose was calculated for 8 RPL glass samples irradiated in the MOPERIX X-ray irradiator in the frame of another study. The calculated doses are in good agreement with the corresponding experimental values, which were measured in the European Organization for Nuclear Research (CERN) readout systems, allowing a validation of the used methodologies and the estimation of usable conversion factors.
first_indexed 2023-10-02T20:00:52Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Ferrari, Prof. Matteo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Girard, Prof. Sylvain", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Alem, Abrham", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-10-02T05:48:23Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-10-02T05:48:23Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/89326", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Matter\u2019s exposure to ionizing radiations leads to a variety of possible interactions. \nDepending on the specific interaction type, energy can be deposited into matter via \ndifferent mechanisms. The quantification of the absorbed dose in matter is crucial to \nmonitor the radiation levels and asses radiation effects in matter in different application \nareas such as radiation therapy, particle accelerators, space applications, and high-energy nuclear radiation facilities. The stochastic nature of radiation-matter interaction \noften requires the use of Monte Carlo tools in dosimetry applications. In the present \nwork, a commercial X-ray irradiator is modeled using PHITS general Monte Carlo tool, \naiming at verifying the possibility of using it for the irradiation of various types of \nmacroscopic samples at high doses, ranging between the kGy and the MGy levels. \nSimulated particle fluence spectra evidence that the effect of the Be exit window, often \nincluded in the X-ray tube design as a first filter and different additional thicknesses of\nAl and Cu filters can be effectively used to attenuate low energy photons, often \nresponsible for high dose inhomogeneities in thick samples. To assess the feasibility of \nusing the available X-ray spectra for the irradiation of different samples having \nthicknesses up to several millimetres, the absorbed dose across the sample\u2019s depth for \ndifferent materials such as Radio Photoluminescent (RPL) glass dosimeters, silica for \ncomparison purposes and water as reference was calculated using PHITS, with a \nsample depth spatial resolution of 0.1 mm and 10 \u00b5m. The homogeneity of the absorbed \ndose in the RPL dosimeter volume can be improved by the use of appropriate types of \nfilters and it is found that 1.5 mm, 3 mm thick Al and 1.5 mm thick Cu filters can improve \nthe dose homogeneity to 30 %, 15 %, and 8 % deviation from the average dose value \nrespectively in the selected samples. By using a combination of the readout of PTW soft \nX-ray ionization chamber, normally used for dose rate calibration in the irradiation \nfacility, and the realized simulations, the absorbed dose was calculated for 8 RPL glass \nsamples irradiated in the MOPERIX X-ray irradiator in the frame of another study. The \ncalculated doses are in good agreement with the corresponding experimental values, \nwhich were measured in the European Organization for Nuclear Research (CERN) \nreadout systems, allowing a validation of the used methodologies and the estimation of \nusable conversion factors.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-10-02T05:48:23Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-10-02T05:48:23Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "57", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202310025340", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "university", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teilyannokset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teily", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dosimetrit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "r\u00f6ntgens\u00e4teily", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fotonit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4teilyfysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Monte Carlo -menetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ionisoiva s\u00e4teily", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation doses", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dosimeters", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "X-ray radiation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "photons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "radiation physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Monte Carlo methods", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ionising radiation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_89326
language eng
last_indexed 2025-03-31T20:01:46Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/270ccfce-7a27-4e29-bde7-72c9bdc4e28b\/download","text":"URN:NBN:fi:jyu-202310025340.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Alem, Abrham Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples Fysiikka Physics 4021 säteilyannokset simulointi säteily dosimetrit röntgensäteily fotonit säteilyfysiikka Monte Carlo -menetelmät ionisoiva säteily radiation doses simulation radiation dosimeters X-ray radiation photons radiation physics Monte Carlo methods ionising radiation
title Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples
title_full Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples
title_fullStr Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples
title_full_unstemmed Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples
title_short Dosimetry study in an X-ray irradiator
title_sort dosimetry study in an x ray irradiator monte carlo simulations and experimental results on radio photoluminescence samples
title_sub Monte Carlo simulations and experimental results on radio-photoluminescence samples
title_txtP Dosimetry study in an X-ray irradiator : Monte Carlo simulations and experimental results on radio-photoluminescence samples
topic Fysiikka Physics 4021 säteilyannokset simulointi säteily dosimetrit röntgensäteily fotonit säteilyfysiikka Monte Carlo -menetelmät ionisoiva säteily radiation doses simulation radiation dosimeters X-ray radiation photons radiation physics Monte Carlo methods ionising radiation
topic_facet 4021 Fysiikka Monte Carlo -menetelmät Monte Carlo methods Physics X-ray radiation dosimeters dosimetrit fotonit ionising radiation ionisoiva säteily photons radiation radiation doses radiation physics röntgensäteily simulation simulointi säteily säteilyannokset säteilyfysiikka
url https://jyx.jyu.fi/handle/123456789/89326 http://www.urn.fi/URN:NBN:fi:jyu-202310025340
work_keys_str_mv AT alemabrham dosimetrystudyinanxrayirradiatormontecarlosimulationsandexperimentalresultsonradiopho