Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells

Liikunnan tiedetään edistävän ihmisten terveyttä, mutta kaikkia liikunnan terveyshyötyjen solu- ja molekyylibiologisia vaikutusmekanismeja ei vielä täysin tunneta. Eläviin organismeihin kohdistuu kaiken aikaa mekaanisia voimia, jotka vaikuttavat niiden biologisiin toimintoihin johtuen mekanotransduk...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Niemi, Erik
Muut tekijät: Liikuntatieteellinen tiedekunta, Faculty of Sport and Health Sciences, Liikunta- ja terveystieteet, Sport and Health Sciences, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2023
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/88589
_version_ 1826225770487349248
author Niemi, Erik
author2 Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_facet Niemi, Erik Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä Niemi, Erik Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_sort Niemi, Erik
datasource_str_mv jyx
description Liikunnan tiedetään edistävän ihmisten terveyttä, mutta kaikkia liikunnan terveyshyötyjen solu- ja molekyylibiologisia vaikutusmekanismeja ei vielä täysin tunneta. Eläviin organismeihin kohdistuu kaiken aikaa mekaanisia voimia, jotka vaikuttavat niiden biologisiin toimintoihin johtuen mekanotransduktiosta. Näitä mekaanisia ärsykkeitä esiintyy erityisesti fyysisen aktiivisuuden aikana. Biologisten prosessien tutkiminen kokonaisissa organismeissa on erityisen haastavaa, minkä takia in vitro -mallien käyttäminen mekanotransduktion tutkimisessa on tärkeää. Tämän tutkimuksen tavoitteena oli tarkastella mekaanisen stimulaation solumallin vaikutuksia ihmisen myotuubien ja endoteelisolujen geeniekspressioon. Geeniekspressioanalyysi suoritettiin RNA-sekvensointidatan pohjalta, joka saatiin ihmisen istukan laskimosuonisoluista (HUVEC), sydämen mikroendoteelisoluista (HCMEC) ja luurankolihassoluista kerätystä RNA:sta sekä kontrolli- että venytysolosuhteissa (5t, 1Hz, 12% venytys). Solujen mekaanisen stimulaation seurauksena merkittävästi eriävästi (log2 muutos ≥ 0.5, korjattu p-arvo ≤ 0.05) ekspressoituneita geenejä löydettiin 615 HUVEC-soluista, 219 HCMEC-soluista ja 221 luurankolihas-myotuubeista. Molemmissa endoteelisolutyypeissä nähtiin inhibitiota geeneissä ja signalointireiteissä liittyen solukasvuun, mitokondrioiden ja ribosomien translaatioon sekä soluhengitykseen, kun puolestaan geenit liittyen oksidatiivisen stressin säätelyyn, solusyklin säätelyyn sekä histoneiden deasetylaatioon (HDAC) olivat yliekspressoituneita. Samankaltaisten geeniryhmien ekspressiosta huolimatta, ainoastaan 11 samaa yksittäistä yliekspressoitunutta geeniä löydettiin endoteelisolutyyppien välillä. Mekaanisesti stimuloiduissa myotuubeissa nähtiin yliekspressiota geeneissä liittyen ribosomien translaatioon, soluhengitykseen, aminohappojen metaboliaan, DNA:n korjaukseen, solutukirankaan ja solukasvuun. Etenkin myotuubien geeniekspressiotulosten kohdalla, tässä tutkimuksessa käytetty mekaanisen stimulaation solumalli sai aikaan vastaavia aikaisemmin nähtyjä liikuntaharjoittelun vaikutuksia geeniekspressioon ihmis- ja eläintutkimuksissa, sekä muissa liikunnan solumalleissa kuten sähköstimulaatiossa. Mekaanisesti stimuloidut HUVEC ja HCMEC solut erosivat toisistaan yksittäisten geenien ekspressoitumisessa, mutta olivat yhteneväisiä samoihin signalointireitteihin liittyvien geeniryhmien yli- ja aliekspressoinnissa. Yllättävästi, ainoastaan muutamia solutukirankaan ja soluväliaineeseen liittyviä geenejä nähtiin yliekspressoituneen mekaanisen stimulaation vaikutuksesta kaikissa kolmessa solutyypissä. Tämän tutkimuksen tulokset antavat viitteitä siitä, että tutkimuksessa käytetty liikuntamalli voisi olla lupaava tapa tutkia liikunnan terveyshyötyjen vaikutusmekanismeja tulevaisuudessa, mutta malli tarvitsee vielä kehitystä, jotta se voisi paremmin vastata solujen todenmukaista fysiologista ympäristöä. Exercise is a widely accepted health promoting practice, but the underlying cellular and molecular mechanisms of the health benefits of exercise are still poorly understood. Living organisms are constantly exposed to mechanical forces, which affect their biological processes through mechanotransduction, and these stimuli are especially present during physical activity. Because of the complexity of in vivo biological systems, appropriate in vitro applications are important for the study of mechanotransduction. The aim of this study was to investigate the effects of in vitro mechanical stimulation of the gene expression of cultured human myotubes and endothelial cells. Differential gene expression analysis was performed on the RNA-SEQ data from collected total RNA of human umbilical vein endothelial cells (HUVEC), human cardiac microvascular endothelial cells (HCMEC) and human skeletal muscle cells (HSkM) in both control and cyclic mechanical stimulation (5h, 1Hz, 12% elongation) conditions. In vitro mechanical stimulation resulted in a total of 615 differentially expressed genes (DEGs) in HUVECs, 219 DEGs in HCMEC and 221 DEGs in HSkM myotubes (log2 FC ≥ 0.5, adj. p-value ≤ 0.05). Both endothelial cell lines showed inhibitory responses to mechanical stress in the genes and signaling pathways related to cell proliferation mitochondrial translation, oxidative phosphorylation and ribosomal translation, while simultaneously genes and pathways related to oxidative stress protection, cell cycle regulation and histone deacetylases (HDAC) were found to be upregulated. Despite the similar responses in gene set expression, only 11 individual upregulated genes were found to overlap in both endothelial cell lines. Mechanically stimulated myotubes showed upregulation in genes and pathways related to ribosomal translation, oxidative phosphorylation, amino acid metabolism, DNA-repair, cytoskeletal integrity, as well as cell growth. Especially in the case of HSkM myotubes, the model used in this study showed some correspondence to previously seen gene expression responses to exercise training in humans, animal models, and other exercise-mimicking in vitro models, such as electrical pulse stimulation. Mechanically stimulated HUVEC and HCMEC cells showed differences in individual upregulated genes but were similar in respect to the up- and downregulation of gene sets and signaling pathways. Unexpectedly, few cytoskeleton and extracellular matrix (ECM) related genes were found to be upregulated in all three cell types. The results of this study suggest that the mechanical stimulation model used could be a promising way to mimic exercise in vitro for future investigations concerning the molecular mechanisms of the benefits of exercise. However, improvements to the model are necessary to better simulate a more representative physiological environment.
first_indexed 2023-08-21T20:00:49Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "Piitulainen, Harri", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Kivel\u00e4, Riikka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Niemi, Erik", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-08-21T05:14:30Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-08-21T05:14:30Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/88589", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Liikunnan tiedet\u00e4\u00e4n edist\u00e4v\u00e4n ihmisten terveytt\u00e4, mutta kaikkia liikunnan terveyshy\u00f6tyjen solu- ja molekyylibiologisia vaikutusmekanismeja ei viel\u00e4 t\u00e4ysin tunneta. El\u00e4viin organismeihin kohdistuu kaiken aikaa mekaanisia voimia, jotka vaikuttavat niiden biologisiin toimintoihin johtuen mekanotransduktiosta. N\u00e4it\u00e4 mekaanisia \u00e4rsykkeit\u00e4 esiintyy erityisesti fyysisen aktiivisuuden aikana. Biologisten prosessien tutkiminen kokonaisissa organismeissa on erityisen haastavaa, mink\u00e4 takia in vitro -mallien k\u00e4ytt\u00e4minen mekanotransduktion tutkimisessa on t\u00e4rke\u00e4\u00e4. T\u00e4m\u00e4n tutkimuksen tavoitteena oli tarkastella mekaanisen stimulaation solumallin vaikutuksia ihmisen myotuubien ja endoteelisolujen geeniekspressioon.\n\nGeeniekspressioanalyysi suoritettiin RNA-sekvensointidatan pohjalta, joka saatiin ihmisen istukan laskimosuonisoluista (HUVEC), syd\u00e4men mikroendoteelisoluista (HCMEC) ja luurankolihassoluista ker\u00e4tyst\u00e4 RNA:sta sek\u00e4 kontrolli- ett\u00e4 venytysolosuhteissa (5t, 1Hz, 12% venytys).\n\nSolujen mekaanisen stimulaation seurauksena merkitt\u00e4v\u00e4sti eri\u00e4v\u00e4sti (log2 muutos \u2265 0.5, korjattu p-arvo \u2264 0.05) ekspressoituneita geenej\u00e4 l\u00f6ydettiin 615 HUVEC-soluista, 219 HCMEC-soluista ja 221 luurankolihas-myotuubeista. Molemmissa endoteelisolutyypeiss\u00e4 n\u00e4htiin inhibitiota geeneiss\u00e4 ja signalointireiteiss\u00e4 liittyen solukasvuun, mitokondrioiden ja ribosomien translaatioon sek\u00e4 soluhengitykseen, kun puolestaan geenit liittyen oksidatiivisen stressin s\u00e4\u00e4telyyn, solusyklin s\u00e4\u00e4telyyn sek\u00e4 histoneiden deasetylaatioon (HDAC) olivat yliekspressoituneita. Samankaltaisten geeniryhmien ekspressiosta huolimatta, ainoastaan 11 samaa yksitt\u00e4ist\u00e4 yliekspressoitunutta geeni\u00e4 l\u00f6ydettiin endoteelisolutyyppien v\u00e4lill\u00e4. Mekaanisesti stimuloiduissa myotuubeissa n\u00e4htiin yliekspressiota geeneiss\u00e4 liittyen ribosomien translaatioon, soluhengitykseen, aminohappojen metaboliaan, DNA:n korjaukseen, solutukirankaan ja solukasvuun.\n\nEtenkin myotuubien geeniekspressiotulosten kohdalla, t\u00e4ss\u00e4 tutkimuksessa k\u00e4ytetty mekaanisen stimulaation solumalli sai aikaan vastaavia aikaisemmin n\u00e4htyj\u00e4 liikuntaharjoittelun vaikutuksia geeniekspressioon ihmis- ja el\u00e4intutkimuksissa, sek\u00e4 muissa liikunnan solumalleissa kuten s\u00e4hk\u00f6stimulaatiossa. Mekaanisesti stimuloidut HUVEC ja HCMEC solut erosivat toisistaan yksitt\u00e4isten geenien ekspressoitumisessa, mutta olivat yhtenev\u00e4isi\u00e4 samoihin signalointireitteihin liittyvien geeniryhmien yli- ja aliekspressoinnissa. Yll\u00e4tt\u00e4v\u00e4sti, ainoastaan muutamia solutukirankaan ja soluv\u00e4liaineeseen liittyvi\u00e4 geenej\u00e4 n\u00e4htiin yliekspressoituneen mekaanisen stimulaation vaikutuksesta kaikissa kolmessa solutyypiss\u00e4. T\u00e4m\u00e4n tutkimuksen tulokset antavat viitteit\u00e4 siit\u00e4, ett\u00e4 tutkimuksessa k\u00e4ytetty liikuntamalli voisi olla lupaava tapa tutkia liikunnan terveyshy\u00f6tyjen vaikutusmekanismeja tulevaisuudessa, mutta malli tarvitsee viel\u00e4 kehityst\u00e4, jotta se voisi paremmin vastata solujen todenmukaista fysiologista ymp\u00e4rist\u00f6\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Exercise is a widely accepted health promoting practice, but the underlying cellular and molecular mechanisms of the health benefits of exercise are still poorly understood. Living organisms are constantly exposed to mechanical forces, which affect their biological processes through mechanotransduction, and these stimuli are especially present during physical activity. Because of the complexity of in vivo biological systems, appropriate in vitro applications are important for the study of mechanotransduction. The aim of this study was to investigate the effects of in vitro mechanical stimulation of the gene expression of cultured human myotubes and endothelial cells.\n\nDifferential gene expression analysis was performed on the RNA-SEQ data from collected total RNA of human umbilical vein endothelial cells (HUVEC), human cardiac microvascular endothelial cells (HCMEC) and human skeletal muscle cells (HSkM) in both control and cyclic mechanical stimulation (5h, 1Hz, 12% elongation) conditions.\n\nIn vitro mechanical stimulation resulted in a total of 615 differentially expressed genes (DEGs) in HUVECs, 219 DEGs in HCMEC and 221 DEGs in HSkM myotubes (log2 FC \u2265 0.5, adj. p-value \u2264 0.05). Both endothelial cell lines showed inhibitory responses to mechanical stress in the genes and signaling pathways related to cell proliferation mitochondrial translation, oxidative phosphorylation and ribosomal translation, while simultaneously genes and pathways related to oxidative stress protection, cell cycle regulation and histone deacetylases (HDAC) were found to be upregulated. Despite the similar responses in gene set expression, only 11 individual upregulated genes were found to overlap in both endothelial cell lines. Mechanically stimulated myotubes showed upregulation in genes and pathways related to ribosomal translation, oxidative phosphorylation, amino acid metabolism, DNA-repair, cytoskeletal integrity, as well as cell growth.\n\nEspecially in the case of HSkM myotubes, the model used in this study showed some correspondence to previously seen gene expression responses to exercise training in humans, animal models, and other exercise-mimicking in vitro models, such as electrical pulse stimulation. Mechanically stimulated HUVEC and HCMEC cells showed differences in individual upregulated genes but were similar in respect to the up- and downregulation of gene sets and signaling pathways. Unexpectedly, few cytoskeleton and extracellular matrix (ECM) related genes were found to be upregulated in all three cell types. The results of this study suggest that the mechanical stimulation model used could be a promising way to mimic exercise in vitro for future investigations concerning the molecular mechanisms of the benefits of exercise. However, improvements to the model are necessary to better simulate a more representative physiological environment.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-08-21T05:14:30Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-08-21T05:14:30Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "75", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "cell model", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "endothelial cells", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "exercise model", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "transcriptomics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "skeletal muscle", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202308214687", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Liikuntatieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Liikunta- ja terveystieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Liikuntafysiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Exercise Physiology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "5011", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "geenit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "geeniekspressio", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "solubiologia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "RNA", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "soluviljely", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiologia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "genes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "gene expression", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cell biology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "RNA", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cell culture", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physiology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/collections/archival-workstation).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_88589
language eng
last_indexed 2025-02-18T10:54:06Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Niemi, Erik Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells cell model endothelial cells exercise model transcriptomics skeletal muscle Liikuntafysiologia Exercise Physiology 5011 geenit geeniekspressio solubiologia RNA soluviljely fysiologia genes gene expression cell biology cell culture physiology
title Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_full Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_fullStr Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_full_unstemmed Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_short Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_sort effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
title_txtP Effects of exercise mimicking mechanical stimulation on gene expression in human myotubes and endothelial cells
topic cell model endothelial cells exercise model transcriptomics skeletal muscle Liikuntafysiologia Exercise Physiology 5011 geenit geeniekspressio solubiologia RNA soluviljely fysiologia genes gene expression cell biology cell culture physiology
topic_facet 5011 Exercise Physiology Liikuntafysiologia RNA cell biology cell culture cell model endothelial cells exercise model fysiologia geeniekspressio geenit gene expression genes physiology skeletal muscle solubiologia soluviljely transcriptomics
url https://jyx.jyu.fi/handle/123456789/88589 http://www.urn.fi/URN:NBN:fi:jyu-202308214687
work_keys_str_mv AT niemierik effectsofexercisemimickingmechanicalstimulationongeneexpressioninhumanmyotubesandendot