Unsupervised feature analysis of real and synthetic knee X-ray images

Generatiiviset mallit ovat parantuneet valtavasti viime vuosina, ja tämä on luonut tarpeen automaattisille validointitekniikoille synteettiselle datalle. Tässä pro gradu -työssä testatiin menetelmää synteettisten kuvien validointiin, joka perustuu piirteiden poimimiseen ja klusterianalyysiin, genera...

Full description

Bibliographic Details
Main Author: Tuomikoski, Joonas
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/88201
_version_ 1828193042692046848
author Tuomikoski, Joonas
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Tuomikoski, Joonas Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Tuomikoski, Joonas Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Tuomikoski, Joonas
datasource_str_mv jyx
description Generatiiviset mallit ovat parantuneet valtavasti viime vuosina, ja tämä on luonut tarpeen automaattisille validointitekniikoille synteettiselle datalle. Tässä pro gradu -työssä testatiin menetelmää synteettisten kuvien validointiin, joka perustuu piirteiden poimimiseen ja klusterianalyysiin, generatiivisten vastakkaisten verkostojen luo- tujen röntgenkuvien avulla. Tulokset osoittavat, että luodut kuvat noudattavat koulutuksessa käytettyjen kuvien jakaumaa, mutta eroavat selvästi toisesta datajoukosta olevista röntgenkuvista. Generative models have improved massively in the recent years, and this has created a need for automatic validation techniques for synthetic data. In this master’s thesis a method for validating synthetic images based on feature extraction and cluster analysis is tested on X-ray images created with generative adversarial networks. The results show that the generated images follow the distribution of the imageset used in training, but are clearly distinct from a different X-ray imageset.
first_indexed 2023-07-04T20:11:42Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Prezja, Fabi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Tuomikoski, Joonas", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-07-04T05:38:53Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-07-04T05:38:53Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/88201", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Generatiiviset mallit ovat parantuneet valtavasti viime vuosina, ja t\u00e4m\u00e4 on luonut tarpeen automaattisille validointitekniikoille synteettiselle datalle.\nT\u00e4ss\u00e4 pro gradu -ty\u00f6ss\u00e4 testatiin menetelm\u00e4\u00e4 synteettisten kuvien validointiin, joka perustuu\npiirteiden poimimiseen ja klusterianalyysiin, generatiivisten vastakkaisten verkostojen luo-\ntujen r\u00f6ntgenkuvien avulla. Tulokset osoittavat, ett\u00e4 luodut kuvat noudattavat koulutuksessa\nk\u00e4ytettyjen kuvien jakaumaa, mutta eroavat selv\u00e4sti toisesta datajoukosta olevista r\u00f6ntgenkuvista.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Generative models have improved massively in the recent years, and this has\ncreated a need for automatic validation techniques for synthetic data. In this master\u2019s thesis\na method for validating synthetic images based on feature extraction and cluster analysis is\ntested on X-ray images created with generative adversarial networks. The results show that\nthe generated images follow the distribution of the imageset used in training, but are clearly\ndistinct from a different X-ray imageset.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2023-07-04T05:38:53Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-07-04T05:38:53Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "46", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "osteoarthritis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Unsupervised feature analysis of real and synthetic knee X-ray images", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202307044343", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "klusterianalyysi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nivelrikko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cluster analysis", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "arthrosis", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_88201
language eng
last_indexed 2025-03-31T20:01:17Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/09460a4a-9002-45fa-9208-70d7ef62d6ad\/download","text":"URN:NBN:fi:jyu-202307044343.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Tuomikoski, Joonas Unsupervised feature analysis of real and synthetic knee X-ray images osteoarthritis Tietotekniikka Mathematical Information Technology 602 klusterianalyysi koneoppiminen neuroverkot nivelrikko cluster analysis machine learning neural networks (information technology) arthrosis
title Unsupervised feature analysis of real and synthetic knee X-ray images
title_full Unsupervised feature analysis of real and synthetic knee X-ray images
title_fullStr Unsupervised feature analysis of real and synthetic knee X-ray images Unsupervised feature analysis of real and synthetic knee X-ray images
title_full_unstemmed Unsupervised feature analysis of real and synthetic knee X-ray images Unsupervised feature analysis of real and synthetic knee X-ray images
title_short Unsupervised feature analysis of real and synthetic knee X-ray images
title_sort unsupervised feature analysis of real and synthetic knee x ray images
title_txtP Unsupervised feature analysis of real and synthetic knee X-ray images
topic osteoarthritis Tietotekniikka Mathematical Information Technology 602 klusterianalyysi koneoppiminen neuroverkot nivelrikko cluster analysis machine learning neural networks (information technology) arthrosis
topic_facet 602 Mathematical Information Technology Tietotekniikka arthrosis cluster analysis klusterianalyysi koneoppiminen machine learning neural networks (information technology) neuroverkot nivelrikko osteoarthritis
url https://jyx.jyu.fi/handle/123456789/88201 http://www.urn.fi/URN:NBN:fi:jyu-202307044343
work_keys_str_mv AT tuomikoskijoonas unsupervisedfeatureanalysisofrealandsynthetickneexrayimages