description |
Kestävyysharjoittelun ohjelmoinnissa on tärkeää tietää, vastaako kuntotestauksessa käytetyillä menetelmillä saadut tulokset haluttua fysiologista vastetta harjoittelussa. Tällä hetkellä tutkimustulokset eivät kaikilta osin ole yksiselitteisiä ja kuntotestauksen käytänteet vaihtelevat esimerkiksi anaerobisen kynnyksen määrittämisen osalta. Tämän pro gradu -tutkielman tarkoituksena oli vertailla suorasta VO2max-testistä määritettyä anaerobista kynnystä tasa-vauhtisista kuormituksista määritettyyn maksimaalisen laktaatin tasapainoon (MLSS).
Tutkimukseen osallistui 21 soutajaa, joista naisia oli 12 (ikä 34,5 (5,6) v, pituus 171,1 (5,9) cm, paino 69,5 (10,1) kg, VO2max 3,10 (0,48) l/min) ja miehiä 9 (ikä 34,9 (6,6) v, pituus 186,7 (6,6) cm, paino 86,2 (7,8) kg, VO2max 4,39 (0,47) l/min). Tutkittavat olivat kansallisen ja kansainvälisen tason eri soutulajien urheilijoita. Tutkittavat suorittivat soutuergometrillä yhteensä neljä testiä, joiden välissä oli vähintään 48 tuntia. Ensimmäinen testi oli suora VO2max-testi, josta määritettiin anaerobinen kynnys viidellä eri menetelmällä. Kolme seuraavaa testiä oli 30 minuutin kestoisia tasavauhtisia testejä, joista ensimmäinen tehtiin lineaarisovite-menetelmällä määritetyllä anaerobisella kynnyksellä. Kaikissa testeissä mitattiin syke, hapenkulutus ja veren laktaattipitoisuus. Tasavauhtisten testien tavoitteena oli löytää MLSS, joka määritelmän mukaan on korkein kuormitusteho, jolla veren laktaattipitoisuus muuttuu korkeintaan 1 mmol/l testin viimeisen 20 minuutin aikana. Jos tasavauhtinen testi oli yli MLSS-tehon, tehoa laskettiin seuraavaan testiin. Jos tasavahtisen testin aikana laktaattipitoisuus ei noussut yli 1 mmol/l, tehoa nostettiin seuraavaan tasavauhtiseen testiin.
MLSS-teho korreloi vahvasti kaikkien eri menetelmillä määritettyjen anaerobisten kynnysten tehojen kanssa (r = 0,973-0,983, p < 0,001). MLSS-tehosta erosi merkitsevästi kaikki eri menetelmillä määritetyt anaerobiset kynnystehot (p < 0,01) paitsi Dmax-menetelmällä määritetty kynnysteho. Lineaarisovitemenetelmällä määritetty teho oli 95 %:lle tutkittavista liian korkea MLSS-tason saavuttamiseksi. Lineaarisovite-, Dmax-, ja OBLA (3 mmol/l) -menetelmillä määritetty anaerobista kynnystä vastaava syke, laktaattipitoisuus ja hapenkulutus eivät eronneet MLSS-teholla tehdyssä kuormituksessa mitatusta sykkeestä, laktaattipitoisuudesta ja hapenkulutuksesta. Sen sijaan modDmax- ja OBLA (4 mmol/l) -menetelmillä määritetty anaerobista kynnystä vastaava syke, laktaattipitoisuus ja hapenkulutus olivat korkeampia kuin MLSS-teholla tehdyn kuormituksen syke, laktaattipitoisuus ja hapenkulutus. Kaikilla määritysmenetelmillä määritetyt anaerobisen kynnyksen tehot olivat toisistaan voimakkaasti riippuvaisia (p < 0,001). Anaerobisen kynnyksen teho oli voimakkaasti riippuvainen nousevatehoisen testin viimeisen eli maksimaalisen kuorman keskitehosta (p < 0,001).
Tutkimuksessa käytetyt anaerobisen kynnyksen määritysmenetelmät eivät Dmax-menetelmää lukuun ottamatta tuottaneet MLSS:a vastaavaa tehoa soutuergometrikuormituksessa. Tämän tutkimuksen perusteella matemaattisten mallien käyttö anaerobisen kynnyksen määrittämisessä ei täysin luotettavasti ennusta MLSS-tehoa nousevatehoisesta testistä. MLSS-tehon arvioiminen nousevatehoisesta testistä tarvitsee tuekseen kokeneen kuntotestaajan ja valmentajan asiantuntemusta.
When programming endurance training, it is important to know whether the results of the fitness tests correspond to the desired physiological response. Currently, there is no consensus between different endurance testing methods, for example regarding the determination of the anaerobic threshold. The purpose of this Master’s thesis was to compare the anaerobic threshold determined by an incremental VO2max-test with maximal lactate steady state (MLSS) determined by constant load tests.
The participants of this study were 21 rowers, of which 12 were female (age 34,5 (5,6) years, height 171,1 (5,9) cm, weight 69,5 (10,1) kg, VO2max 3,10 (0,48) l/min) and 9 were male (age 34,9 (6,6) years, height 186,7 (6,6) cm, weight 86,2 (7,8) kg, VO2max 4,39 (0,47) l/min). The participants were national and international level athletes in various rowing disciplines. The participants performed a total of four tests, separated by at least 48 hours, on a rowing ergometer. The first test was the incremental VO2max-test, from which the anaerobic threshold was determined using five different methods. The next three tests were 30-minute constant load tests, of which the first was performed at the anaerobic threshold determined by the linear fit method. Heart rate, oxygen consumption and blood lactate concentration were measured in all tests. The objective of the constant load tests was to find the MLSS, which is defined by the highest load at which the blood lactate concentration changes by no more than 1 mmol/l during the last 20 minutes of the test. If the constant load test was above the MLSS, the power was lowered for the next test. If during the constant load test the lactate concentration did not rise above the 1 mmol/l, the power was increased to the next constant load test.
MLSS power correlated strongly with the power of all anaerobic thresholds determined by different methods (r = 0.973-0.983, p < 0.001). MLSS power was significantly different from all anaerobic threshold powers determined by the different methods (p < 0.01) except for the threshold power determined by the Dmax-method. The power determined by the linear fit method was too high for 95% of participants to reach the MLSS. The heart rate, lactate concentration and oxygen consumption corresponding the anaerobic threshold determined by the linear fit, Dmax, and OBLA (3 mmol/l) methods were not different from the heart rate, lactate concentration and oxygen consumption measured at MLSS power. In contrast, the heart rate, lactate concentration and oxygen consumption corresponding to the anaerobic threshold de-termined by modDmax and OBLA (4 mmol/l) were higher than the heart rate, lactate concen-tration and oxygen consumption of the MLSS. The anaerobic threshold power determined by different methods were strongly correlated to each other (p < 0.001). Anaerobic threshold power was strongly dependent on the mean power of the last, maximal step of the incremen-tal test (p < 0.001).
Except for the Dmax method, the anaerobic threshold determination methods used in this study did not produce the same power with the MLSS on the rowing ergometer. The results indicate that the use of mathematical models to determine anaerobic threshold is not entirely valid for predicting MLSS from the incremental test. Estimating MLSS from an incremental test requires the expertise of an experienced fitness tester and a coach.
|
fullrecord |
[{"key": "dc.contributor.advisor", "value": "Ahtiainen, Juha", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Nummela, Ari", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Hiltunen, Ilona", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-06-19T07:31:46Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-06-19T07:31:46Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/87915", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Kest\u00e4vyysharjoittelun ohjelmoinnissa on t\u00e4rke\u00e4\u00e4 tiet\u00e4\u00e4, vastaako kuntotestauksessa k\u00e4ytetyill\u00e4 menetelmill\u00e4 saadut tulokset haluttua fysiologista vastetta harjoittelussa. T\u00e4ll\u00e4 hetkell\u00e4 tutkimustulokset eiv\u00e4t kaikilta osin ole yksiselitteisi\u00e4 ja kuntotestauksen k\u00e4yt\u00e4nteet vaihtelevat esimerkiksi anaerobisen kynnyksen m\u00e4\u00e4ritt\u00e4misen osalta. T\u00e4m\u00e4n pro gradu -tutkielman tarkoituksena oli vertailla suorasta VO2max-testist\u00e4 m\u00e4\u00e4ritetty\u00e4 anaerobista kynnyst\u00e4 tasa-vauhtisista kuormituksista m\u00e4\u00e4ritettyyn maksimaalisen laktaatin tasapainoon (MLSS).\n\nTutkimukseen osallistui 21 soutajaa, joista naisia oli 12 (ik\u00e4 34,5 (5,6) v, pituus 171,1 (5,9) cm, paino 69,5 (10,1) kg, VO2max 3,10 (0,48) l/min) ja miehi\u00e4 9 (ik\u00e4 34,9 (6,6) v, pituus 186,7 (6,6) cm, paino 86,2 (7,8) kg, VO2max 4,39 (0,47) l/min). Tutkittavat olivat kansallisen ja kansainv\u00e4lisen tason eri soutulajien urheilijoita. Tutkittavat suorittivat soutuergometrill\u00e4 yhteens\u00e4 nelj\u00e4 testi\u00e4, joiden v\u00e4liss\u00e4 oli v\u00e4hint\u00e4\u00e4n 48 tuntia. Ensimm\u00e4inen testi oli suora VO2max-testi, josta m\u00e4\u00e4ritettiin anaerobinen kynnys viidell\u00e4 eri menetelm\u00e4ll\u00e4. Kolme seuraavaa testi\u00e4 oli 30 minuutin kestoisia tasavauhtisia testej\u00e4, joista ensimm\u00e4inen tehtiin lineaarisovite-menetelm\u00e4ll\u00e4 m\u00e4\u00e4ritetyll\u00e4 anaerobisella kynnyksell\u00e4. Kaikissa testeiss\u00e4 mitattiin syke, hapenkulutus ja veren laktaattipitoisuus. Tasavauhtisten testien tavoitteena oli l\u00f6yt\u00e4\u00e4 MLSS, joka m\u00e4\u00e4ritelm\u00e4n mukaan on korkein kuormitusteho, jolla veren laktaattipitoisuus muuttuu korkeintaan 1 mmol/l testin viimeisen 20 minuutin aikana. Jos tasavauhtinen testi oli yli MLSS-tehon, tehoa laskettiin seuraavaan testiin. Jos tasavahtisen testin aikana laktaattipitoisuus ei noussut yli 1 mmol/l, tehoa nostettiin seuraavaan tasavauhtiseen testiin. \n\nMLSS-teho korreloi vahvasti kaikkien eri menetelmill\u00e4 m\u00e4\u00e4ritettyjen anaerobisten kynnysten tehojen kanssa (r = 0,973-0,983, p < 0,001). MLSS-tehosta erosi merkitsev\u00e4sti kaikki eri menetelmill\u00e4 m\u00e4\u00e4ritetyt anaerobiset kynnystehot (p < 0,01) paitsi Dmax-menetelm\u00e4ll\u00e4 m\u00e4\u00e4ritetty kynnysteho. Lineaarisovitemenetelm\u00e4ll\u00e4 m\u00e4\u00e4ritetty teho oli 95 %:lle tutkittavista liian korkea MLSS-tason saavuttamiseksi. Lineaarisovite-, Dmax-, ja OBLA (3 mmol/l) -menetelmill\u00e4 m\u00e4\u00e4ritetty anaerobista kynnyst\u00e4 vastaava syke, laktaattipitoisuus ja hapenkulutus eiv\u00e4t eronneet MLSS-teholla tehdyss\u00e4 kuormituksessa mitatusta sykkeest\u00e4, laktaattipitoisuudesta ja hapenkulutuksesta. Sen sijaan modDmax- ja OBLA (4 mmol/l) -menetelmill\u00e4 m\u00e4\u00e4ritetty anaerobista kynnyst\u00e4 vastaava syke, laktaattipitoisuus ja hapenkulutus olivat korkeampia kuin MLSS-teholla tehdyn kuormituksen syke, laktaattipitoisuus ja hapenkulutus. Kaikilla m\u00e4\u00e4ritysmenetelmill\u00e4 m\u00e4\u00e4ritetyt anaerobisen kynnyksen tehot olivat toisistaan voimakkaasti riippuvaisia (p < 0,001). Anaerobisen kynnyksen teho oli voimakkaasti riippuvainen nousevatehoisen testin viimeisen eli maksimaalisen kuorman keskitehosta (p < 0,001).\n\nTutkimuksessa k\u00e4ytetyt anaerobisen kynnyksen m\u00e4\u00e4ritysmenetelm\u00e4t eiv\u00e4t Dmax-menetelm\u00e4\u00e4 lukuun ottamatta tuottaneet MLSS:a vastaavaa tehoa soutuergometrikuormituksessa. T\u00e4m\u00e4n tutkimuksen perusteella matemaattisten mallien k\u00e4ytt\u00f6 anaerobisen kynnyksen m\u00e4\u00e4ritt\u00e4misess\u00e4 ei t\u00e4ysin luotettavasti ennusta MLSS-tehoa nousevatehoisesta testist\u00e4. MLSS-tehon arvioiminen nousevatehoisesta testist\u00e4 tarvitsee tuekseen kokeneen kuntotestaajan ja valmentajan asiantuntemusta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "When programming endurance training, it is important to know whether the results of the fitness tests correspond to the desired physiological response. Currently, there is no consensus between different endurance testing methods, for example regarding the determination of the anaerobic threshold. The purpose of this Master\u2019s thesis was to compare the anaerobic threshold determined by an incremental VO2max-test with maximal lactate steady state (MLSS) determined by constant load tests.\n\nThe participants of this study were 21 rowers, of which 12 were female (age 34,5 (5,6) years, height 171,1 (5,9) cm, weight 69,5 (10,1) kg, VO2max 3,10 (0,48) l/min) and 9 were male (age 34,9 (6,6) years, height 186,7 (6,6) cm, weight 86,2 (7,8) kg, VO2max 4,39 (0,47) l/min). The participants were national and international level athletes in various rowing disciplines. The participants performed a total of four tests, separated by at least 48 hours, on a rowing ergometer. The first test was the incremental VO2max-test, from which the anaerobic threshold was determined using five different methods. The next three tests were 30-minute constant load tests, of which the first was performed at the anaerobic threshold determined by the linear fit method. Heart rate, oxygen consumption and blood lactate concentration were measured in all tests. The objective of the constant load tests was to find the MLSS, which is defined by the highest load at which the blood lactate concentration changes by no more than 1 mmol/l during the last 20 minutes of the test. If the constant load test was above the MLSS, the power was lowered for the next test. If during the constant load test the lactate concentration did not rise above the 1 mmol/l, the power was increased to the next constant load test. \n\nMLSS power correlated strongly with the power of all anaerobic thresholds determined by different methods (r = 0.973-0.983, p < 0.001). MLSS power was significantly different from all anaerobic threshold powers determined by the different methods (p < 0.01) except for the threshold power determined by the Dmax-method. The power determined by the linear fit method was too high for 95% of participants to reach the MLSS. The heart rate, lactate concentration and oxygen consumption corresponding the anaerobic threshold determined by the linear fit, Dmax, and OBLA (3 mmol/l) methods were not different from the heart rate, lactate concentration and oxygen consumption measured at MLSS power. In contrast, the heart rate, lactate concentration and oxygen consumption corresponding to the anaerobic threshold de-termined by modDmax and OBLA (4 mmol/l) were higher than the heart rate, lactate concen-tration and oxygen consumption of the MLSS. The anaerobic threshold power determined by different methods were strongly correlated to each other (p < 0.001). Anaerobic threshold power was strongly dependent on the mean power of the last, maximal step of the incremen-tal test (p < 0.001).\n\nExcept for the Dmax method, the anaerobic threshold determination methods used in this study did not produce the same power with the MLSS on the rowing ergometer. The results indicate that the use of mathematical models to determine anaerobic threshold is not entirely valid for predicting MLSS from the incremental test. Estimating MLSS from an incremental test requires the expertise of an experienced fitness tester and a coach.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-06-19T07:31:46Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-06-19T07:31:46Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "68", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "MLSS", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "laktaattikynnys", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "VO2max-testi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "kynnystesti", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "soutuergometri", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Maksimaalisen laktaatin tasapainon yhteys nousevatehoisesta kuormituksesta m\u00e4\u00e4ritettyyn anaerobiseen kynnykseen", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202306193970", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Liikuntatieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Liikunta- ja terveystieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Valmennus- ja testausoppi", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Science in Sport Coaching and Fitness Testing", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "5013", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "testaus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kuntotestit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "anaerobinen kynnys", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
|