Natural language generation methods on small datasets

Tämän Pro gradu -tutkielman tavoitteena on tutkia takaisinkytkettyjen neuroverkkojen (RNN) käyttöä luonnollisen kielen generointiin pienillä tietoaineistoilla. Pieni tietoaineisto luodaan keräämällä tekstiä laulun sanoista, ja kaksi mallia, sanatason RNN ja merkkitason RNN, rakennetaan luonnollisen...

Full description

Bibliographic Details
Main Author: Ahonen, Eemil
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/87849
_version_ 1826225682865192960
author Ahonen, Eemil
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Ahonen, Eemil Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Ahonen, Eemil Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Ahonen, Eemil
datasource_str_mv jyx
description Tämän Pro gradu -tutkielman tavoitteena on tutkia takaisinkytkettyjen neuroverkkojen (RNN) käyttöä luonnollisen kielen generointiin pienillä tietoaineistoilla. Pieni tietoaineisto luodaan keräämällä tekstiä laulun sanoista, ja kaksi mallia, sanatason RNN ja merkkitason RNN, rakennetaan luonnollisen kielen generoimista varten. Mallien suorituskykyä verrataan generoidun tekstin laadun ja tulosteen monimuotoisuuden perusteella ja tarkastellaan eri hyperparametrien vaikutusta mallien suorituskykyyn. Havaitaan, että sanatason RNN luo koherentimpaa tekstiä kuin merkkitason RNN malli. This thesis studies the use of recurrent neural networks (RNNs) for natural language generation on small datasets. A small dataset is created by collecting text on song lyrics, and two models, a word-level RNN and a character-level RNN, are built for natural language generation. The performance of the models is compared based on the quality of generated text and the diversity of the output, and the impact of different hyperparameters on the models' performance is explored. Word-level model is found to outperform the character-level model in generating coherent sentences.
first_indexed 2024-09-11T08:49:17Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "Saarela, Mirka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Ahonen, Eemil", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-06-16T06:25:09Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-06-16T06:25:09Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/87849", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n Pro gradu -tutkielman tavoitteena on tutkia takaisinkytkettyjen neuroverkkojen (RNN) k\u00e4ytt\u00f6\u00e4 luonnollisen kielen generointiin pienill\u00e4 tietoaineistoilla. Pieni tietoaineisto luodaan ker\u00e4\u00e4m\u00e4ll\u00e4 teksti\u00e4 laulun sanoista, ja kaksi mallia, sanatason RNN ja merkkitason RNN, rakennetaan luonnollisen kielen generoimista varten. Mallien suorituskyky\u00e4 verrataan generoidun tekstin laadun ja tulosteen monimuotoisuuden perusteella ja tarkastellaan eri hyperparametrien vaikutusta mallien suorituskykyyn. Havaitaan, ett\u00e4 sanatason RNN luo koherentimpaa teksti\u00e4 kuin merkkitason RNN malli.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This thesis studies the use of recurrent neural networks (RNNs) for natural language generation on small datasets. A small dataset is created by collecting text on song lyrics, and two models, a word-level RNN and a character-level RNN, are built for natural language generation. The performance of the models is compared based on the quality of generated text and the diversity of the output, and the impact of different hyperparameters on the models' performance is explored. Word-level model is found to outperform the character-level model in generating coherent sentences.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-06-16T06:25:09Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-06-16T06:25:09Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "46", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "natural language processing", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "recurrent neural network", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Natural language generation methods on small datasets", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202306163904", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "luonnollinen kieli", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "natural language", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/collections/archival-workstation).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/kokoelmat/arkistotyoasema..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_87849
language eng
last_indexed 2025-02-18T10:56:16Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Ahonen, Eemil Natural language generation methods on small datasets natural language processing recurrent neural network Tietotekniikka Mathematical Information Technology 602 neuroverkot luonnollinen kieli neural networks (information technology) natural language
title Natural language generation methods on small datasets
title_full Natural language generation methods on small datasets
title_fullStr Natural language generation methods on small datasets Natural language generation methods on small datasets
title_full_unstemmed Natural language generation methods on small datasets Natural language generation methods on small datasets
title_short Natural language generation methods on small datasets
title_sort natural language generation methods on small datasets
title_txtP Natural language generation methods on small datasets
topic natural language processing recurrent neural network Tietotekniikka Mathematical Information Technology 602 neuroverkot luonnollinen kieli neural networks (information technology) natural language
topic_facet 602 Mathematical Information Technology Tietotekniikka luonnollinen kieli natural language natural language processing neural networks (information technology) neuroverkot recurrent neural network
url https://jyx.jyu.fi/handle/123456789/87849 http://www.urn.fi/URN:NBN:fi:jyu-202306163904
work_keys_str_mv AT ahoneneemil naturallanguagegenerationmethodsonsmalldatasets