Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme

In this thesis we study stochastic McKean-Vlasov equations. These are stochastic differential equations where the coefficients depend also on the distribution of the solution. This dependency adds to the complexity of the equation so in this thesis we will study these equations using a discrete appr...

Full description

Bibliographic Details
Main Author: Koskela, Emilia
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/87653
_version_ 1828193040803561472
author Koskela, Emilia
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Koskela, Emilia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Koskela, Emilia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Koskela, Emilia
datasource_str_mv jyx
description In this thesis we study stochastic McKean-Vlasov equations. These are stochastic differential equations where the coefficients depend also on the distribution of the solution. This dependency adds to the complexity of the equation so in this thesis we will study these equations using a discrete approximation. We focus on considering the existence of a unique strong solution to stochastic McKean-Vlasov equations using a discrete and recursive Euler-Maruyama approximation, as well as the convergence rate of the approximation. Our main source is the article Euler-Maruyama Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients written by Xiaojie Ding and Huijie Qiao, which we follow throughout this thesis. In the thesis we recall some preliminary theory surrounding stochastic processes and stochastic differential equations and introduce some results. We give the definitions for weak and strong solutions for the McKean-Vlasov equation as well as the definition for the martingale problem. We also introduce some useful inequalities. We give the assumptions under which we work in this thesis, such as the assumption that the coefficients of the McKean-Vlasov equations satisfy some non-Lipschitz conditions. One of the main results in this thesis is to show the existence of unique strong solutions. We approach this in two steps: first, we show the recursive construction of the Euler-Maruyama approximation. With this approximation we show that there exists a solution to the martingale problem and hence we get the existence of a weak solution. Then, using Ito’s formula we prove that pathwise uniqueness holds under our assumptions. After these two steps we show that the existence of a strong unique solution can be proven. We also investigate with the help of Ito’s formula the convergence rate of the Euler-Maruyama approximation used to show the existence of the solution.
first_indexed 2024-09-11T08:51:22Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Geiss, Christel", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Koskela, Emilia", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-06-13T04:52:33Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-06-13T04:52:33Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/87653", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis we study stochastic McKean-Vlasov equations. These are stochastic\ndifferential equations where the coefficients depend also on the distribution of the\nsolution. This dependency adds to the complexity of the equation so in this thesis we\nwill study these equations using a discrete approximation.\nWe focus on considering the existence of a unique strong solution to stochastic\nMcKean-Vlasov equations using a discrete and recursive Euler-Maruyama approximation,\nas well as the convergence rate of the approximation. Our main source is\nthe article Euler-Maruyama Approximations for Stochastic McKean-Vlasov Equations\nwith Non-Lipschitz Coefficients written by Xiaojie Ding and Huijie Qiao, which we\nfollow throughout this thesis.\nIn the thesis we recall some preliminary theory surrounding stochastic processes and\nstochastic differential equations and introduce some results. We give the definitions\nfor weak and strong solutions for the McKean-Vlasov equation as well as the definition\nfor the martingale problem. We also introduce some useful inequalities. We give\nthe assumptions under which we work in this thesis, such as the assumption that the\ncoefficients of the McKean-Vlasov equations satisfy some non-Lipschitz conditions.\nOne of the main results in this thesis is to show the existence of unique strong solutions.\nWe approach this in two steps: first, we show the recursive construction of the\nEuler-Maruyama approximation. With this approximation we show that there exists\na solution to the martingale problem and hence we get the existence of a weak solution.\nThen, using Ito\u2019s formula we prove that pathwise uniqueness holds under our assumptions.\nAfter these two steps we show that the existence of a strong unique\nsolution can be proven. We also investigate with the help of Ito\u2019s formula the convergence\nrate of the Euler-Maruyama approximation used to show the existence of the\nsolution.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2023-06-13T04:52:33Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-06-13T04:52:33Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "45", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202306133721", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Stokastiikka ja todenn\u00e4k\u00f6isyysteoria", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Stochastics and Probability", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.copyright", "value": "\u00a9 The Author(s)", "language": null, "element": "rights", "qualifier": "copyright", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stokastiset prosessit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matematiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "differentiaaliyht\u00e4l\u00f6t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "approksimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "stochastic processes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mathematics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "differential equations", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "approximation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_87653
language eng
last_indexed 2025-03-31T20:03:17Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/a98f4eac-7554-4241-8cf1-472d70589eba\/download","text":"URN:NBN:fi:jyu-202306133721.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Koskela, Emilia Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme Stokastiikka ja todennäköisyysteoria Stochastics and Probability 4041 stokastiset prosessit matematiikka differentiaaliyhtälöt approksimointi stochastic processes mathematics differential equations approximation
title Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
title_full Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
title_fullStr Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
title_full_unstemmed Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
title_short Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
title_sort approximations for stochastic mckean vlasov equations with non lipschitz coefficients by an euler maruyama scheme
title_txtP Approximations for Stochastic McKean-Vlasov Equations with Non-Lipschitz Coefficients by an Euler-Maruyama Scheme
topic Stokastiikka ja todennäköisyysteoria Stochastics and Probability 4041 stokastiset prosessit matematiikka differentiaaliyhtälöt approksimointi stochastic processes mathematics differential equations approximation
topic_facet 4041 Stochastics and Probability Stokastiikka ja todennäköisyysteoria approksimointi approximation differentiaaliyhtälöt differential equations matematiikka mathematics stochastic processes stokastiset prosessit
url https://jyx.jyu.fi/handle/123456789/87653 http://www.urn.fi/URN:NBN:fi:jyu-202306133721
work_keys_str_mv AT koskelaemilia approximationsforstochasticmckeanvlasovequationswithnonlipschitzcoefficientsbyaneu