Koneoppimistyökalujen toimintaperiaatteet

Koneoppimisalgoritmit ja neuroverkot ovat nykyään osa jokapäiväistä elämäämme, ja niiden tuoma kehitys on mullistanut yhteiskunnan montaa osa-aluetta. Nopean kehityksen vuoksi asiaan perehtymätön henkilö tuskin yleensä edes huomaa käyttävänsä koneoppimiseen perustuvia teknologioita. Koneoppiminen, j...

Full description

Bibliographic Details
Main Author: Lappalainen, Markus
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/87381
_version_ 1828193198754758656
author Lappalainen, Markus
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Lappalainen, Markus Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Lappalainen, Markus Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Lappalainen, Markus
datasource_str_mv jyx
description Koneoppimisalgoritmit ja neuroverkot ovat nykyään osa jokapäiväistä elämäämme, ja niiden tuoma kehitys on mullistanut yhteiskunnan montaa osa-aluetta. Nopean kehityksen vuoksi asiaan perehtymätön henkilö tuskin yleensä edes huomaa käyttävänsä koneoppimiseen perustuvia teknologioita. Koneoppiminen, ja varsinkin neuroverkot, ovat nykyään niin monimutkaisia, että niiden toimintaa voi olla vaikeaa, tai jopa mahdotonta ymmärtää. Tutkimus toteutettiin kuvailevana kirjallisuuskatsauksena. Tutkimuksessa annetaan ensin lyhyt yleiskatsaus koneoppimisesta lukijan ymmärryksen tueksi. Tutkimuksen päätarkoitus, sekä tutkimusongelma, oli selvittää koneoppimistyökalujen toimintaperiaatteet. Tutkimusongelmaa selvitettiin tutustumalla koneoppimistyö-kalujen toimintaan, etenkin niiden opetusvaiheeseen, jonka aikana luodaan edellytykset niiden päätöksenteolle. Tutkimuksessa selvitettiin joidenkin suosittujen koneoppimistyökalujen toimintaperiaatteita, sekä esitellään ne helppolukuisessa ja helposti ymmärrettävässä muodossa, ilman matemaattisia kaavoja. Koneoppimistyökalujen perustoimintaperiaatteeksi löydettiin virhefunktiot, ja niiden minimoiminen. Virhefunktiot esittävät koneoppimistyökalun ennusteen ja toteutuneen tapahtuman välistä eroa, joten virhefunktion minimoiminen on koneoppimisen ydintavoite. Keinot virhefunktioiden minimoimiseksi riippuu käsiteltävän koneoppimistyökalun piirteistä. Tarkasteltaessa valittujen koneoppimistyökalujen optimointiongelmia, paljastui yleisimmäksi keinoksi gradienttimenetelmään perustuvat iteratiiviset optimointialgoritmit. Tutkimuksen aikana löytyi myös muita optimointiongelmia, joita ei pystytä ratkaisemaan gradienttimenetelmällä. Tutkimuksen aikana selvisi myös koneoppimisen perustuvan vahvasti matematiikkaan, erityisesti lineaarialgebraan sekä derivointiin. Machine learning algorithms and neural networks are a ubiquitous part of our everyday lives, and their recent development has revolutionized many areas of society. Due to the rapid pace of development, a person who is not familiar with the subject may not even realize that they are using technologies based on machine learning. Machine learning, especially neural networks, are now so complex that understanding the logic behind their decision can sometimes be impossible. The study was conducted as a descriptive literature review. The study begins by providing a brief overview of machine learning to support the reader's understanding. The main objective of the study, and the research question, was to clarify the basic principles of machine learning tools. This was done by examining the operation of machine learning tools, particularly their training phase, during which the conditions for their decision-making are established. The study examined the operating principles of some popular machine learning tools and presented them in an easy-to-understand form, without mathematical formulas. The basic operating principle of machine learning tools was found to be cost functions and their minimization. Cost functions measure the difference between the prediction of the machine learning tool and the actual outcome, so minimizing the cost function can be seen as the primary goal of machine learning. The method for minimizing a cost function depends on the characteristics of the machine learning tool being used. When examining the optimization methods of the studied machine learning tools, iterative optimization algorithms based on the gradient descent algorithm were found to be the most common approach. The study also identified other optimization problems that cannot be solved by the gradient descent algorithm. At the time of writing the study, it became clear that machine learning is heavily based on mathematics, especially linear algebra, and differentiation.
first_indexed 2023-06-01T20:01:07Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Taipalus, Toni", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Lappalainen, Markus", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-06-01T06:53:26Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-06-01T06:53:26Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/87381", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Koneoppimisalgoritmit ja neuroverkot ovat nyky\u00e4\u00e4n osa jokap\u00e4iv\u00e4ist\u00e4 el\u00e4m\u00e4\u00e4mme, ja niiden tuoma kehitys on mullistanut yhteiskunnan montaa osa-aluetta. Nopean kehityksen vuoksi asiaan perehtym\u00e4t\u00f6n henkil\u00f6 tuskin yleens\u00e4 edes huomaa k\u00e4ytt\u00e4v\u00e4ns\u00e4 koneoppimiseen perustuvia teknologioita. Koneoppiminen, ja varsinkin neuroverkot, ovat nyky\u00e4\u00e4n niin monimutkaisia, ett\u00e4 niiden toimintaa voi olla vaikeaa, tai jopa mahdotonta ymm\u00e4rt\u00e4\u00e4. Tutkimus toteutettiin kuvailevana kirjallisuuskatsauksena. Tutkimuksessa annetaan ensin lyhyt yleiskatsaus koneoppimisesta lukijan ymm\u00e4rryksen tueksi. Tutkimuksen p\u00e4\u00e4tarkoitus, sek\u00e4 tutkimusongelma, oli selvitt\u00e4\u00e4 koneoppimisty\u00f6kalujen toimintaperiaatteet. Tutkimusongelmaa selvitettiin tutustumalla koneoppimisty\u00f6-kalujen toimintaan, etenkin niiden opetusvaiheeseen, jonka aikana luodaan edellytykset niiden p\u00e4\u00e4t\u00f6ksenteolle. Tutkimuksessa selvitettiin joidenkin suosittujen koneoppimisty\u00f6kalujen toimintaperiaatteita, sek\u00e4 esitell\u00e4\u00e4n ne helppolukuisessa ja helposti ymm\u00e4rrett\u00e4v\u00e4ss\u00e4 muodossa, ilman matemaattisia kaavoja. Koneoppimisty\u00f6kalujen perustoimintaperiaatteeksi l\u00f6ydettiin virhefunktiot, ja niiden minimoiminen. Virhefunktiot esitt\u00e4v\u00e4t koneoppimisty\u00f6kalun ennusteen ja toteutuneen tapahtuman v\u00e4list\u00e4 eroa, joten virhefunktion minimoiminen on koneoppimisen ydintavoite. Keinot virhefunktioiden minimoimiseksi riippuu k\u00e4sitelt\u00e4v\u00e4n koneoppimisty\u00f6kalun piirteist\u00e4. Tarkasteltaessa valittujen koneoppimisty\u00f6kalujen optimointiongelmia, paljastui yleisimm\u00e4ksi keinoksi gradienttimenetelm\u00e4\u00e4n perustuvat iteratiiviset optimointialgoritmit. Tutkimuksen aikana l\u00f6ytyi my\u00f6s muita optimointiongelmia, joita ei pystyt\u00e4 ratkaisemaan gradienttimenetelm\u00e4ll\u00e4. Tutkimuksen aikana selvisi my\u00f6s koneoppimisen perustuvan vahvasti matematiikkaan, erityisesti lineaarialgebraan sek\u00e4 derivointiin.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Machine learning algorithms and neural networks are a ubiquitous part of our everyday lives, and their recent development has revolutionized many areas of society. Due to the rapid pace of development, a person who is not familiar with the subject may not even realize that they are using technologies based on machine learning. Machine learning, especially neural networks, are now so complex that understanding the logic behind their decision can sometimes be impossible. The study was conducted as a descriptive literature review. The study begins by providing a brief overview of machine learning to support the reader's understanding. The main objective of the study, and the research question, was to clarify the basic principles of machine learning tools. This was done by examining the operation of machine learning tools, particularly their training phase, during which the conditions for their decision-making are established. The study examined the operating principles of some popular machine learning tools and presented them in an easy-to-understand form, without mathematical formulas. The basic operating principle of machine learning tools was found to be cost functions and their minimization. Cost functions measure the difference between the prediction of the machine learning tool and the actual outcome, so minimizing the cost function can be seen as the primary goal of machine learning. The method for minimizing a cost function depends on the characteristics of the machine learning tool being used. When examining the optimization methods of the studied machine learning tools, iterative optimization algorithms based on the gradient descent algorithm were found to be the most common approach. The study also identified other optimization problems that cannot be solved by the gradient descent algorithm. At the time of writing the study, it became clear that machine learning is heavily based on mathematics, especially linear algebra, and differentiation.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-06-01T06:53:26Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-06-01T06:53:26Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "28", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Koneoppimisty\u00f6kalujen toimintaperiaatteet", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202306013436", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_87381
language fin
last_indexed 2025-03-31T20:01:53Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/f17b62ca-0e72-4897-bdad-25b78edcd060\/download","text":"URN:NBN:fi:jyu-202306013436.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Lappalainen, Markus Koneoppimistyökalujen toimintaperiaatteet Tietojärjestelmätiede Information Systems Science 601 tekoäly neuroverkot koneoppiminen algoritmit
title Koneoppimistyökalujen toimintaperiaatteet
title_full Koneoppimistyökalujen toimintaperiaatteet
title_fullStr Koneoppimistyökalujen toimintaperiaatteet Koneoppimistyökalujen toimintaperiaatteet
title_full_unstemmed Koneoppimistyökalujen toimintaperiaatteet Koneoppimistyökalujen toimintaperiaatteet
title_short Koneoppimistyökalujen toimintaperiaatteet
title_sort koneoppimistyökalujen toimintaperiaatteet
title_txtP Koneoppimistyökalujen toimintaperiaatteet
topic Tietojärjestelmätiede Information Systems Science 601 tekoäly neuroverkot koneoppiminen algoritmit
topic_facet 601 Information Systems Science Tietojärjestelmätiede algoritmit koneoppiminen neuroverkot tekoäly
url https://jyx.jyu.fi/handle/123456789/87381 http://www.urn.fi/URN:NBN:fi:jyu-202306013436
work_keys_str_mv AT lappalainenmarkus koneoppimistyökalujentoimintaperiaatteet