Machine learning methods utilization in business intelligence systems

Tässä kirjallisuuskatsauksessa käsitellään koneoppimisen hyödyntämistä BI-järjestelmien hyötyjen edistämisen näkökulmasta. Koneoppiminen ja sen algoritmit ovat alati kehittyvä tapa käsitellä suuria määriä dataa tavoitteenaan joko kuvailla käytettyä aineistoa tai tehdä päätelmiä tulevaisuuteen sen po...

Full description

Bibliographic Details
Main Author: Jaara, Akseli
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:eng
Published: 2023
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/86387
_version_ 1826225812732379136
author Jaara, Akseli
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Jaara, Akseli Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Jaara, Akseli Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Jaara, Akseli
datasource_str_mv jyx
description Tässä kirjallisuuskatsauksessa käsitellään koneoppimisen hyödyntämistä BI-järjestelmien hyötyjen edistämisen näkökulmasta. Koneoppiminen ja sen algoritmit ovat alati kehittyvä tapa käsitellä suuria määriä dataa tavoitteenaan joko kuvailla käytettyä aineistoa tai tehdä päätelmiä tulevaisuuteen sen pohjalta. Näille metodeille kehitetään jatkuvasti uusia käytännön sovelluksia reaalimaailman ilmiöiden tarkastelemiseksi. Yksi koneoppimisen käyttökohteista on liiketoimintadatan hyödyntäminen, ja tämä tutkielma keskittyy koneoppimismallien hyödyntämiseen juuri BI-järjestelmien hyötyjen kehittämisen näkökulmasta. Yksi tärkeimmistä löydöistä tässä tutkimuksessa on saatavilla olevan aineiston perusteella koneoppimismallien tämänhetkisen hyödyntämisen kartoittaminen lähdeaineistossa esiintyvien BI-järjestelmien hyötyjen suhteen. Erityisesti ennustavia malleja hyödynnetään ja niiden käyttöä kehitetään BI:ssä tehokkaasti, mutta kuvailevia malleja ja niiden hyödyntämistä on tutkittu vähän ottaen huomioon kuvailevien koneoppimismallien hyödyntämisen potentiaalin dataohjautuvassa liiketoiminnan kehittämisessä. This literature review discusses utilization of machine learning methods in business intelligence systems on the viewpoint of benefits of business intelligence systems. Machine learning and the algorithms themselves are continuously evolving way of processing massive amounts of data in order to either produce descriptions or predictions based on available datasets. These algorithms have more and more real-life implementations, and one of those implementations is the business intelligence system improvement, and this thesis focuses on these implementations of the beneficial viewpoint of business intelligence systems. One of the most important findings of this research based on available literature is the mapping of the current utilization of machine learning methods on business intelligence systems’ benefits. Especially predictive methods have been studied and developed efficiently; however, the descriptive models and their utilization has been studied very little regarding to the vast amount of possibilities of descriptive machine learning methods on data-driven business development.
first_indexed 2023-04-18T20:00:54Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Marttiin, Pentti", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Jaara, Akseli", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2023-04-18T05:42:36Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2023-04-18T05:42:36Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2023", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/86387", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 kirjallisuuskatsauksessa k\u00e4sitell\u00e4\u00e4n koneoppimisen hy\u00f6dynt\u00e4mist\u00e4 BI-j\u00e4rjestelmien hy\u00f6tyjen edist\u00e4misen n\u00e4k\u00f6kulmasta. Koneoppiminen ja sen algoritmit ovat alati kehittyv\u00e4 tapa k\u00e4sitell\u00e4 suuria m\u00e4\u00e4ri\u00e4 dataa tavoitteenaan joko kuvailla k\u00e4ytetty\u00e4 aineistoa tai tehd\u00e4 p\u00e4\u00e4telmi\u00e4 tulevaisuuteen sen pohjalta. N\u00e4ille metodeille kehitet\u00e4\u00e4n jatkuvasti uusia k\u00e4yt\u00e4nn\u00f6n sovelluksia reaalimaailman ilmi\u00f6iden tarkastelemiseksi. Yksi koneoppimisen k\u00e4ytt\u00f6kohteista on liiketoimintadatan hy\u00f6dynt\u00e4minen, ja t\u00e4m\u00e4 tutkielma keskittyy koneoppimismallien hy\u00f6dynt\u00e4miseen juuri BI-j\u00e4rjestelmien hy\u00f6tyjen kehitt\u00e4misen n\u00e4k\u00f6kulmasta. Yksi t\u00e4rkeimmist\u00e4 l\u00f6yd\u00f6ist\u00e4 t\u00e4ss\u00e4 tutkimuksessa on saatavilla olevan aineiston perusteella koneoppimismallien t\u00e4m\u00e4nhetkisen hy\u00f6dynt\u00e4misen kartoittaminen l\u00e4hdeaineistossa esiintyvien BI-j\u00e4rjestelmien hy\u00f6tyjen suhteen. Erityisesti ennustavia malleja hy\u00f6dynnet\u00e4\u00e4n ja niiden k\u00e4ytt\u00f6\u00e4 kehitet\u00e4\u00e4n BI:ss\u00e4 tehokkaasti, mutta kuvailevia malleja ja niiden hy\u00f6dynt\u00e4mist\u00e4 on tutkittu v\u00e4h\u00e4n ottaen huomioon kuvailevien koneoppimismallien hy\u00f6dynt\u00e4misen potentiaalin dataohjautuvassa liiketoiminnan kehitt\u00e4misess\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This literature review discusses utilization of machine learning methods in business intelligence systems on the viewpoint of benefits of business intelligence systems. Machine learning and the algorithms themselves are continuously evolving way of processing massive amounts of data in order to either produce descriptions or predictions based on available datasets. These algorithms have more and more real-life implementations, and one of those implementations is the business intelligence system improvement, and this thesis focuses on these implementations of the beneficial viewpoint of business intelligence systems. One of the most important findings of this research based on available literature is the mapping of the current utilization of machine learning methods on business intelligence systems\u2019 benefits. Especially predictive methods have been studied and developed efficiently; however, the descriptive models and their utilization has been studied very little regarding to the vast amount of possibilities of descriptive machine learning methods on data-driven business development.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2023-04-18T05:42:36Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2023-04-18T05:42:36Z (GMT). No. of bitstreams: 0\n Previous issue date: 2023", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "27", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "business intelligence benefits", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Machine learning methods utilization in business intelligence systems", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202304182511", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "business intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "business intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_86387
language eng
last_indexed 2025-02-18T10:55:10Z
main_date 2023-01-01T00:00:00Z
main_date_str 2023
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/62322f49-0915-4b60-b520-df40faebda08\/download","text":"URN:NBN:fi:jyu-202304182511.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2023
record_format qdc
source_str_mv jyx
spellingShingle Jaara, Akseli Machine learning methods utilization in business intelligence systems business intelligence benefits Tietojärjestelmätiede Information Systems Science 601 koneoppiminen business intelligence machine learning
title Machine learning methods utilization in business intelligence systems
title_full Machine learning methods utilization in business intelligence systems
title_fullStr Machine learning methods utilization in business intelligence systems Machine learning methods utilization in business intelligence systems
title_full_unstemmed Machine learning methods utilization in business intelligence systems Machine learning methods utilization in business intelligence systems
title_short Machine learning methods utilization in business intelligence systems
title_sort machine learning methods utilization in business intelligence systems
title_txtP Machine learning methods utilization in business intelligence systems
topic business intelligence benefits Tietojärjestelmätiede Information Systems Science 601 koneoppiminen business intelligence machine learning
topic_facet 601 Information Systems Science Tietojärjestelmätiede business intelligence business intelligence benefits koneoppiminen machine learning
url https://jyx.jyu.fi/handle/123456789/86387 http://www.urn.fi/URN:NBN:fi:jyu-202304182511
work_keys_str_mv AT jaaraakseli machinelearningmethodsutilizationinbusinessintelligencesystems