Vertaileva tutkimus koneoppimisen hyödyntämisestä videopelien reitinhaussa

Reitinhaku on yksi suurimmista ongelmista tekoälyn tutkimuksessa. Viime vuosikymmenten aikana sekä robotiikan että videopelien reitinhakuongelmat ovat tuottaneet erilaisia ratkaisuja kuten A*-algoritmi ja sen variaatiot. Videopeleissä etenkin A*-algoritmia on pidetty luotettavana ratkaisuna sen opti...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Keränen, Emil
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:fin
Julkaistu: 2022
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/84540
Kuvaus
Yhteenveto:Reitinhaku on yksi suurimmista ongelmista tekoälyn tutkimuksessa. Viime vuosikymmenten aikana sekä robotiikan että videopelien reitinhakuongelmat ovat tuottaneet erilaisia ratkaisuja kuten A*-algoritmi ja sen variaatiot. Videopeleissä etenkin A*-algoritmia on pidetty luotettavana ratkaisuna sen optimaalisuuden takia. Dynaamiset pelialueet ja moniagenttireitinhaku ovat kuitenkin tuoneet haasteita, joihin A*-algoritmi ei ole pystynyt yksin vastaamaan. Tässä tutkimuksessa hyödynnetään Unity-pelinkehitysalustalle luotua ML-agents-pakettia koneoppimisagentin luomiseen ja testataan sen soveltuvuutta reitinhakutehtäviin. Koneoppimisagentit käyttävät syvää vahvistusoppimista ja siihen perustuvaa Soft Actor-Critic -algoritmia. Lopuksi tarkoituksena on vertailla perinteisen A*-algoritmin tuloksia koneoppimisagentin tuloksiin. Pathfinding or path planning is one of the major problems in AI research. During the last decades pathfinding in both robotics and video games has produced different solutions like A*-algorithm and its variations. In video games especially A*-algorithm has been the reliable solution because of its optimality. Dynamic video game environments and multi-agent pathfinding have brought challenges where A*-algorithm alone has proven to be insufficient. In this thesis Unity platform and its ML-agents-package will be used to create machine learning agent for executing pathfinding tasks. Machine learning agent uses deep reinforcement learning and Soft Actor-Critic -algorithm. Lastly A*-based solutions and machine learning agents will be compared against each other.