Neuroverkkoihin pohjautuvat koneoppimismallit aivokuvantamismenetelmien tukena

Keinotekoiset neuroverkot ovat tehokkaita laskennallisia työkaluja merkityksellisten piirteiden irroittamiseen suurista datamassoista. Aivokuvantamismenetelmien kehittyessä aivoista saadaan yhä enemmän dataa terveydenhuollon ja tieteellisen tutkimuksen tarpeisiin. Näiden datamäärien käsittely manuaa...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Nordlund, Tuomas
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Kandityö
Kieli:fin
Julkaistu: 2022
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/84536
Kuvaus
Yhteenveto:Keinotekoiset neuroverkot ovat tehokkaita laskennallisia työkaluja merkityksellisten piirteiden irroittamiseen suurista datamassoista. Aivokuvantamismenetelmien kehittyessä aivoista saadaan yhä enemmän dataa terveydenhuollon ja tieteellisen tutkimuksen tarpeisiin. Näiden datamäärien käsittely manuaalisesti vaatii kuitenkin suuria inhimillisiä ponnisteluja. Siitä huolimatta kaikkea sitä tietoa, joka voisi olla hyödyllistä tai tarpeellista, ei siltikään saada irti, eikä sitä välttämättä edes osata etsiä. Neuroverkkoja kehitetään jatkuvasti vastaamaan näihin kasvaviin haasteisiin, ja tutkimusten perusteella ne soveltuvat hyvin moniulotteisen aivokuvantamisdatan käsittelyyn. Neuroverkot pystyvät oppimaan monien eri sairauksien piirteitä aivoista tallennetuista signaaleista. Neuroverkot voidaan opettaa tunnistamaan terveiden aivojen eri tiloja esimerkiksi tehtävien ja koettujen tunteiden aikana. Neuroverkkoja voidaan myös hyödyntää aivokäyttöliittymäsovelluksissa, jossa ne tulkitsevat nopeasti EEG-datasta käyttäjän antaman käskyn. Artificial neural networks are powerful computational tools for extracting meaningful features from big datasets. As brain imaging techniques develop further, more and more data is being gathered from the brain to meet the needs of healthcare and scientific research. Processing all of this data manually requires great human effort. Nevertheless, all of the information which could be useful or important cannot be extracted, and some of it we do not even know to search. Neural networks are being constantly developed to meet these increasing demands, and based on research they are well suited for the processing of multidimensional brain imaging data. Neural networks are able to learn the features of many different disorders from the signals recorded from the brain. Neural networks can also be taught to recognize different states of a healthy brain, for example during tasks or experienced emotions. Neural networks can also be applied in brain-computer interface applications, where they rapidly interpret the commands of the user from EEG data.