Big data analytiikan hyödyntäminen jalkapallossa

Tässä kandidaatin tutkielmassa tutkitaan Big datan käyttöä jalkapallon pelillisten elementtien kehitystyökaluna. Big data on ollut kuuma puheenaihe monilla aloilla viimeisen vuosikymmenen aikana. Tämä on myös heijastunut urheilun maailmaan. Big data analytiikan tehokasta käyttöä varten vaaditaan kui...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Fors, Rasmus
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Kandityö
Kieli:fin
Julkaistu: 2022
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/84226
_version_ 1826225805821214720
author Fors, Rasmus
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Fors, Rasmus Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Fors, Rasmus Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Fors, Rasmus
datasource_str_mv jyx
description Tässä kandidaatin tutkielmassa tutkitaan Big datan käyttöä jalkapallon pelillisten elementtien kehitystyökaluna. Big data on ollut kuuma puheenaihe monilla aloilla viimeisen vuosikymmenen aikana. Tämä on myös heijastunut urheilun maailmaan. Big data analytiikan tehokasta käyttöä varten vaaditaan kuitenkin merkittäviä investointeja ja osaamista. Oikein toteutettuna kuitenkin Big data voi tarjota jalkapallo joukkueille kilpailullisen etuaseman suhteessa vastustajiin esimerkiksi tehostamalla pelaajien ominaisuuksia, pienentämällä loukkaantumisriskejä ja tehostamalla taktista analyysiä. Tutkielma on toteutettu kirjallisuuskatsauksena. Tutkielmassa huomattiin Big datan käytön olevan melko pientä verrattuna muihin isoihin urheilulajeihin, mutta sitä Big dataa implementoimalla on jo saatu merkittäviä urheilullisia saavutuksia. This bachelor’s thesis is a literature review of how big data is being used as a tool to enhance footballers and football teams skills and methodologies. Big data has been a hot topic in various fields the past decade, even in the sports industry. Efficient use of big data however requires significant investments and know how. When implemented correctly big data can provide football teams a competitive advantage against rivalry teams. Big data can provide better tools to develop the players skills, help minimize injuries and enhancing tactical analysis. The usage of big data is not as common in football when compared to other sports, however the usage of big data has already provided significant achievements to those who have implemented it correctly.
first_indexed 2022-12-08T21:00:28Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Kypp\u00f6, Jorma", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Fors, Rasmus", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-12-08T08:11:55Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-12-08T08:11:55Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/84226", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 kandidaatin tutkielmassa tutkitaan Big datan k\u00e4ytt\u00f6\u00e4 jalkapallon pelillisten elementtien kehitysty\u00f6kaluna. Big data on ollut kuuma puheenaihe monilla aloilla viimeisen vuosikymmenen aikana. T\u00e4m\u00e4 on my\u00f6s heijastunut urheilun maailmaan. Big data analytiikan tehokasta k\u00e4ytt\u00f6\u00e4 varten vaaditaan kuitenkin merkitt\u00e4vi\u00e4 investointeja ja osaamista. Oikein toteutettuna kuitenkin Big data voi tarjota jalkapallo joukkueille kilpailullisen etuaseman suhteessa vastustajiin esimerkiksi tehostamalla pelaajien ominaisuuksia, pienent\u00e4m\u00e4ll\u00e4 loukkaantumisriskej\u00e4 ja tehostamalla taktista analyysi\u00e4. Tutkielma on toteutettu kirjallisuuskatsauksena. Tutkielmassa huomattiin Big datan k\u00e4yt\u00f6n olevan melko pient\u00e4 verrattuna muihin isoihin urheilulajeihin, mutta sit\u00e4 Big dataa implementoimalla on jo saatu merkitt\u00e4vi\u00e4 urheilullisia saavutuksia.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This bachelor\u2019s thesis is a literature review of how big data is being used as a tool to enhance footballers and football teams skills and methodologies. Big data has been a hot topic in various fields the past decade, even in the sports industry. Efficient use of big data however requires significant investments and know how. When implemented correctly big data can provide football teams a competitive advantage against rivalry teams. Big data can provide better tools to develop the players skills, help minimize injuries and enhancing tactical analysis. The usage of big data is not as common in football when compared to other sports, however the usage of big data has already provided significant achievements to those who have implemented it correctly.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2022-12-08T08:11:55Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-12-08T08:11:55Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "25", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "urheiluanalytiikka", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "big data analytiikka", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Big data analytiikan hy\u00f6dynt\u00e4minen jalkapallossa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202212085488", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonhallinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "jalkapallo", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_84226
language fin
last_indexed 2025-02-18T10:55:41Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/a172ba70-9ea0-46b1-b777-6eff50d733b1\/download","text":"URN:NBN:fi:jyu-202212085488.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Fors, Rasmus Big data analytiikan hyödyntäminen jalkapallossa urheiluanalytiikka big data analytiikka Tietojärjestelmätiede Information Systems Science 601 big data tiedonhallinta jalkapallo
title Big data analytiikan hyödyntäminen jalkapallossa
title_full Big data analytiikan hyödyntäminen jalkapallossa
title_fullStr Big data analytiikan hyödyntäminen jalkapallossa Big data analytiikan hyödyntäminen jalkapallossa
title_full_unstemmed Big data analytiikan hyödyntäminen jalkapallossa Big data analytiikan hyödyntäminen jalkapallossa
title_short Big data analytiikan hyödyntäminen jalkapallossa
title_sort big data analytiikan hyödyntäminen jalkapallossa
title_txtP Big data analytiikan hyödyntäminen jalkapallossa
topic urheiluanalytiikka big data analytiikka Tietojärjestelmätiede Information Systems Science 601 big data tiedonhallinta jalkapallo
topic_facet 601 Information Systems Science Tietojärjestelmätiede big data big data analytiikka jalkapallo tiedonhallinta urheiluanalytiikka
url https://jyx.jyu.fi/handle/123456789/84226 http://www.urn.fi/URN:NBN:fi:jyu-202212085488
work_keys_str_mv AT forsrasmus bigdataanalytiikanhyödyntäminenjalkapallossa