Koneoppiminen ja massadata terveydenhuollossa

Terveydenhuollon järjestelmät tuottavat valtavan määrän uutta dataa päivittäin. Dataa on niin paljon, että puhutaan jo massadatasta. Tästä datasta on mahdollista etsiä tietämystä, jolla terveydenhuoltoa pystyttäisiin parantamaan ja tehostamaan. Massadataa tutkitaan erityisesti tiedonlouhinnan ja kon...

Full description

Bibliographic Details
Main Author: Colliander, Jeremias
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81795
_version_ 1826225815350673408
author Colliander, Jeremias
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Colliander, Jeremias Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Colliander, Jeremias Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Colliander, Jeremias
datasource_str_mv jyx
description Terveydenhuollon järjestelmät tuottavat valtavan määrän uutta dataa päivittäin. Dataa on niin paljon, että puhutaan jo massadatasta. Tästä datasta on mahdollista etsiä tietämystä, jolla terveydenhuoltoa pystyttäisiin parantamaan ja tehostamaan. Massadataa tutkitaan erityisesti tiedonlouhinnan ja koneoppimisen algoritmeja hyödyntämällä. Massadatan hyödyntäminen on muilla aloilla arkipäivää jo useita vuosia, mutta terveydenhuollossa se ei ole läheskään yhtä pitkälle kehittynyt. Terveydenhuollon massadatan hyödyntämisessä onkin omat haasteensa ja esteensä, jotka on onnistuttava ratkaisemaan ennen kuin siitä pystytään tuottamaan mitään arvokasta. Tämä tutkimus tutkii kirjallisuuskatsauksen muodossa, mitä uniikkeja ominaisuuksia ja haasteita terveydenhuollon massadatan hyödyntäminen pitää sisällään. Samalla tutkitaan mitä asioita koneoppimisen avulla pystyttäisiin parantamaan. Tutkimus keskittyy erityisesti massadatan analysointiin ja hyödyntämiseen koneoppimisen näkökulmasta. Tutkimuksessa havaittiin, että massadatan tehokkaan hyödyntämisen esteenä on itse datan luonteesta aiheutuvat haasteet kuten datan epätäydellisyys, joka vaikeuttaa suoraan mallien kouluttamista nykyisillä algoritmeilla. Koneoppimista hyödyntämällä pystyttäisiin automatisoimaan toistuvia kliinisiä tehtäviä kuten hoitohistorian läpikäyntiä, varmentamaan hoidon oikeellisuutta sekä tarjoamaan tukea hoitopäätösten teossa. Healthcare systems produce massive amounts of new data every day. There is so much data that we are talking about big data. From this data, it is possible to search for new knowledge that could improve and streamline healthcare. Big data is analyzed by using different data mining and machine learning algorithms. The use of big data has been commonplace in other fields for several years, but it is not as advanced in the healthcare domain. There are challenges and obstacles in utilizing big data in healthcare that must be first solved before anything valuable can be produced. This study examines, in the form of a literature review, the unique features and challenges of utilizing healthcare big data. At the same time is examined, what things could be improved in healthcare with the help of machine learning. The research focuses especially on the analysis and utilization of big data from the perspective of machine learning. The study found that barriers to the efficient utilization of mass data are due to the nature of the data itself, such as the incompleteness of the data, which directly complicates the training of models with current algorithms. Utilizing machine learning would be able to automate repetitive clinical tasks such as reviewing treatment history, verify the correctness of treatment, and provide support in making treatment decisions.
first_indexed 2022-06-16T20:00:53Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Kypp\u00f6, Jorma", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Colliander, Jeremias", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-16T09:26:41Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-16T09:26:41Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81795", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Terveydenhuollon j\u00e4rjestelm\u00e4t tuottavat valtavan m\u00e4\u00e4r\u00e4n uutta dataa p\u00e4ivitt\u00e4in. Dataa on niin paljon, ett\u00e4 puhutaan jo massadatasta. T\u00e4st\u00e4 datasta on mahdollista etsi\u00e4 tiet\u00e4myst\u00e4, jolla terveydenhuoltoa pystytt\u00e4isiin parantamaan ja tehostamaan. Massadataa tutkitaan erityisesti tiedonlouhinnan ja koneoppimisen algoritmeja hy\u00f6dynt\u00e4m\u00e4ll\u00e4. Massadatan hy\u00f6dynt\u00e4minen on muilla aloilla arkip\u00e4iv\u00e4\u00e4 jo useita vuosia, mutta terveydenhuollossa se ei ole l\u00e4hesk\u00e4\u00e4n yht\u00e4 pitk\u00e4lle kehittynyt. Terveydenhuollon massadatan hy\u00f6dynt\u00e4misess\u00e4 onkin omat haasteensa ja esteens\u00e4, jotka on onnistuttava ratkaisemaan ennen kuin siit\u00e4 pystyt\u00e4\u00e4n tuottamaan mit\u00e4\u00e4n arvokasta. T\u00e4m\u00e4 tutkimus tutkii kirjallisuuskatsauksen muodossa, mit\u00e4 uniikkeja ominaisuuksia ja haasteita terveydenhuollon massadatan hy\u00f6dynt\u00e4minen pit\u00e4\u00e4 sis\u00e4ll\u00e4\u00e4n. Samalla tutkitaan mit\u00e4 asioita koneoppimisen avulla pystytt\u00e4isiin parantamaan. Tutkimus keskittyy erityisesti massadatan analysointiin ja hy\u00f6dynt\u00e4miseen koneoppimisen n\u00e4k\u00f6kulmasta. Tutkimuksessa havaittiin, ett\u00e4 massadatan tehokkaan hy\u00f6dynt\u00e4misen esteen\u00e4 on itse datan luonteesta aiheutuvat haasteet kuten datan ep\u00e4t\u00e4ydellisyys, joka vaikeuttaa suoraan mallien kouluttamista nykyisill\u00e4 algoritmeilla. Koneoppimista hy\u00f6dynt\u00e4m\u00e4ll\u00e4 pystytt\u00e4isiin automatisoimaan toistuvia kliinisi\u00e4 teht\u00e4vi\u00e4 kuten hoitohistorian l\u00e4pik\u00e4ynti\u00e4, varmentamaan hoidon oikeellisuutta sek\u00e4 tarjoamaan tukea hoitop\u00e4\u00e4t\u00f6sten teossa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Healthcare systems produce massive amounts of new data every day. There is so much data that we are talking about big data. From this data, it is possible to search for new knowledge that could improve and streamline healthcare. Big data is analyzed by using different data mining and machine learning algorithms. The use of big data has been commonplace in other fields for several years, but it is not as advanced in the healthcare domain. There are challenges and obstacles in utilizing big data in healthcare that must be first solved before anything valuable can be produced. This study examines, in the form of a literature review, the unique features and challenges of utilizing healthcare big data. At the same time is examined, what things could be improved in healthcare with the help of machine learning. The research focuses especially on the analysis and utilization of big data from the perspective of machine learning. The study found that barriers to the efficient utilization of mass data are due to the nature of the data itself, such as the incompleteness of the data, which directly complicates the training of models with current algorithms. Utilizing machine learning would be able to automate repetitive clinical tasks such as reviewing treatment history, verify the correctness of treatment, and provide support in making treatment decisions.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-16T09:26:41Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-16T09:26:41Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "27", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "massadata", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Koneoppiminen ja massadata terveydenhuollossa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206163404", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonlouhinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "terveydenhuolto", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_81795
language fin
last_indexed 2025-02-18T10:54:53Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/3292dbc2-3829-4690-af4a-dd16637cb344\/download","text":"URN:NBN:fi:jyu-202206163404.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Colliander, Jeremias Koneoppiminen ja massadata terveydenhuollossa massadata Tietojärjestelmätiede Information Systems Science 601 big data koneoppiminen tiedonlouhinta terveydenhuolto tekoäly
title Koneoppiminen ja massadata terveydenhuollossa
title_full Koneoppiminen ja massadata terveydenhuollossa
title_fullStr Koneoppiminen ja massadata terveydenhuollossa Koneoppiminen ja massadata terveydenhuollossa
title_full_unstemmed Koneoppiminen ja massadata terveydenhuollossa Koneoppiminen ja massadata terveydenhuollossa
title_short Koneoppiminen ja massadata terveydenhuollossa
title_sort koneoppiminen ja massadata terveydenhuollossa
title_txtP Koneoppiminen ja massadata terveydenhuollossa
topic massadata Tietojärjestelmätiede Information Systems Science 601 big data koneoppiminen tiedonlouhinta terveydenhuolto tekoäly
topic_facet 601 Information Systems Science Tietojärjestelmätiede big data koneoppiminen massadata tekoäly terveydenhuolto tiedonlouhinta
url https://jyx.jyu.fi/handle/123456789/81795 http://www.urn.fi/URN:NBN:fi:jyu-202206163404
work_keys_str_mv AT collianderjeremias koneoppiminenjamassadataterveydenhuollossa