Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä

Tutkimuksen tavoitteena oli kehittää ennustemalli, joka ennustaa meno-paluulennon aikataulun vuorokautta ennen lentoa viiden minuutin tarkkuudella. Aikatauluennusteesta nähdään poikkeamat ja myöhästymiset, jolloin sidosryhmille jää aikaa reagoida poikkeavaan aikatauluun. Tutkimusmenetelmänä on suunn...

Full description

Bibliographic Details
Main Author: Korpela, Jari
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81776
_version_ 1826225702422183936
author Korpela, Jari
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Korpela, Jari Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Korpela, Jari Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Korpela, Jari
datasource_str_mv jyx
description Tutkimuksen tavoitteena oli kehittää ennustemalli, joka ennustaa meno-paluulennon aikataulun vuorokautta ennen lentoa viiden minuutin tarkkuudella. Aikatauluennusteesta nähdään poikkeamat ja myöhästymiset, jolloin sidosryhmille jää aikaa reagoida poikkeavaan aikatauluun. Tutkimusmenetelmänä on suunnittelutiede ja kolmen silmukan malli. Ennuste tehtiin koneoppimisen XGBoost-algoritmilla useasta optimoidusta vaiheesta koottuna kokonaisennnusteena. Vastaavaa ennustemallia ei oltu aiemmin tutkittu. Tutkimuksessa kehitettiin ennustemalli, jolla saavutettiin asetettu tavoite. Opitulla tietämyksellä ja tarkennetulla tavoitteella voidaan tehdä erilaisiin tarpeisiin sopivia ennustemalleja. The aim of the research was to develop a forecasting model that predicts a roundtrip flight schedule the day before the flight with an accuracy of five minutes. The schedule forecast indicates deviations and delays, leaving stakeholders time to react to the changed schedule. The research method is design science, and the forecasting method is a step-bystep method of machine learning. The study developed a model to achieve the set goal. A similar prediction model had not been previously studied. With the knowledge learned and the refined goal, forecasting models suitable for unique needs can be made.
first_indexed 2024-09-11T08:52:04Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "H\u00e4m\u00e4l\u00e4inen, Joonas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Korpela, Jari", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-16T06:49:11Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-16T06:49:11Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81776", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Tutkimuksen tavoitteena oli kehitt\u00e4\u00e4 ennustemalli, joka ennustaa meno-paluulennon aikataulun vuorokautta ennen lentoa viiden minuutin tarkkuudella. Aikatauluennusteesta n\u00e4hd\u00e4\u00e4n poikkeamat ja my\u00f6h\u00e4stymiset, jolloin sidosryhmille j\u00e4\u00e4 aikaa reagoida poikkeavaan aikatauluun. Tutkimusmenetelm\u00e4n\u00e4 on suunnittelutiede ja kolmen silmukan malli. Ennuste tehtiin koneoppimisen XGBoost-algoritmilla useasta optimoidusta vaiheesta koottuna kokonaisennnusteena. Vastaavaa ennustemallia ei oltu aiemmin tutkittu. Tutkimuksessa kehitettiin ennustemalli, jolla saavutettiin asetettu tavoite. Opitulla tiet\u00e4myksell\u00e4 ja tarkennetulla\ntavoitteella voidaan tehd\u00e4 erilaisiin tarpeisiin sopivia ennustemalleja.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The aim of the research was to develop a forecasting model that predicts a roundtrip flight schedule the day before the flight with an accuracy of five minutes. The schedule forecast indicates deviations and delays, leaving stakeholders time to react to the changed schedule. The research method is design science, and the forecasting method is a step-bystep method of machine learning. The study developed a model to achieve the set goal. A\nsimilar prediction model had not been previously studied. With the knowledge learned and the refined goal, forecasting models suitable for unique needs can be made.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-16T06:49:11Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-16T06:49:11Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "93", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "ennustaminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Lentoliikenteen aikataulupoikkeamien ennustaminen teko\u00e4lyll\u00e4", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206163385", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "aikataulut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ennusteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lentoliikenne", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tietotekniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lentokent\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ilmailu", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_81776
language fin
last_indexed 2025-02-18T10:56:44Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/336e6f12-a26c-446e-8892-76a97792bd9f\/download","text":"URN:NBN:fi:jyu-202206163385.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Korpela, Jari Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä ennustaminen Tietotekniikka Mathematical Information Technology 602 aikataulut tekoäly ennusteet koneoppiminen lentoliikenne tietotekniikka lentokentät ilmailu
title Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_full Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_fullStr Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_full_unstemmed Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_short Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_sort lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
title_txtP Lentoliikenteen aikataulupoikkeamien ennustaminen tekoälyllä
topic ennustaminen Tietotekniikka Mathematical Information Technology 602 aikataulut tekoäly ennusteet koneoppiminen lentoliikenne tietotekniikka lentokentät ilmailu
topic_facet 602 Mathematical Information Technology Tietotekniikka aikataulut ennustaminen ennusteet ilmailu koneoppiminen lentokentät lentoliikenne tekoäly tietotekniikka
url https://jyx.jyu.fi/handle/123456789/81776 http://www.urn.fi/URN:NBN:fi:jyu-202206163385
work_keys_str_mv AT korpelajari lentoliikenteenaikataulupoikkeamienennustaminentekoälyllä