Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa

IoT on mullistanut maailman jossa nykyään elämme ja se tuo valtavasti uusia mahdollisuuksia ja tapoja kanssakäydä ympäristömme kanssa. Ympäristöstä kerättävä datan määrä on kasvanut valtavasti, sillä sensoreita voidaan upottaa lähes mihin tahansa ja tämän datan prosessoimiseen on olemassa tehokkaita...

Full description

Bibliographic Details
Main Author: Leikari, Aaro
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81775
_version_ 1826225754943258624
author Leikari, Aaro
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Leikari, Aaro Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Leikari, Aaro Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Leikari, Aaro
datasource_str_mv jyx
description IoT on mullistanut maailman jossa nykyään elämme ja se tuo valtavasti uusia mahdollisuuksia ja tapoja kanssakäydä ympäristömme kanssa. Ympäristöstä kerättävä datan määrä on kasvanut valtavasti, sillä sensoreita voidaan upottaa lähes mihin tahansa ja tämän datan prosessoimiseen on olemassa tehokkaita työkaluja. Pilvipalvelut ovat pitkään olleet suosittu tapa varastoida ja prosessoida kerättyä dataa, mutta koska datan määrä on niin valtava, ei ole kovin mielekästä lähettää tällaista suurtaa määrää dataa pitkiä matkoja. Jossakin tilanteissa saattaa olla tarkoituksen mukaisempaa ja jopa välttämätöntä, että data prosessoidaan osittain tai kokonaan lähellä sen lähdettä ja että kyetään nopeasti vastaamaan muuttuviin olosuhteisiin. Onkin varsin ilmiselvää, että pelkästään pilvipalveluita käyttämällä ei tällaisiin vaatimuksiin voida päästä. Siksi tähän rinnalle on noussut uusi paradigma jota nimitetään reunalaskennaksi. Mikrokontrollerien kehitys muistin, laskentatehon ja koon pienentymisen puolesta on mahdollistanut sen, että kerättyä dataa voidaan prosessoida jo hyvin aikaisessa vaiheessa lähellä datan lähdettä. Tämä avaa uusia sovelluskohteita, sekä hyötyjä esimerkiksi tietoturvan ja datan perusteella tehtävien toimenpiteiden suorittamisen suhteen. Kuitenkin tällä saralla on vielä paljon tutkimusta tehtävänä. Tässä tutkielmassa tutkittiin reunalaskennan soveltamista liukkauden havainnoinnissa. Tutkielmassa rakennettiin yksinkertainen sovellus, joka kykenee sensoreilla keräämään dataa ympäristöstä, prosessoimaan dataa, syöttämään prosessoidun datan tekoälymallille ja näin tuottamaan tuloksia datan pohjalta. Sovellusta testattiin viikon ajan ja tulokset kirjattiin lokitiedostoon. Tuloksista selviää, että vaikka itse tutkimus ei onnistunutkaan täysin kuten oltiin alkuun suunniteltu, on reunalaskennalle silti nähtävissä potentiaalia valitun skenaarion tarkkailussa. IoT has revolutionized the world we live in today and it brings enormous possibilities and ways we can interact with the world around us. The amount of data gathered from our environment has increased enormously because now a days sensors can be embedded almost everywhere. On the other hand the tools used to process this gathered data have become more and more effective, too. For a long time cloud computing has been the most widely used method to process this data and cloud services are used to store data. However, the amount of data has become so massive that it is not very efficient to move such big loads of data for long distances. In some cases it might be more practical or even essential to process the data on the location where it is generated and in turn to take action in different situations. Given this statement, it is quite obvious that cloud computing alone can not meet these requirements. The pressure to meet these requirements has created a new computing paradigm called edge computing. The advancements in microcontroller techonologies, specifically size, computing capacity and increased memory, are the key features making edge computing possible. Edge computing opens up a whole new world of possibilities with applications and benefits for example with information security and with the speed that a certain action can be taken based on data from environment. In this research an application was built that uses edge computing. The goal was to examine, how could an application using edge computing be used to monitor the formation of slippery conditions. The application gathers data from the environment using sensors, processes the gathered data and feeds that processed data to an ai model which then makes an inference and that inference is stored. Even though the research itself did not go as was planned, it is safe to say that edge computing could still be used in the scenarion examined in this research.
first_indexed 2022-06-16T20:00:53Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "H\u00e4m\u00e4l\u00e4inen, Timo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Leikari, Aaro", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-16T06:47:00Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-16T06:47:00Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81775", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "IoT on mullistanut maailman jossa nyky\u00e4\u00e4n el\u00e4mme ja se tuo valtavasti uusia\nmahdollisuuksia ja tapoja kanssak\u00e4yd\u00e4 ymp\u00e4rist\u00f6mme kanssa. Ymp\u00e4rist\u00f6st\u00e4 ker\u00e4tt\u00e4v\u00e4 datan\nm\u00e4\u00e4r\u00e4 on kasvanut valtavasti, sill\u00e4 sensoreita voidaan upottaa l\u00e4hes mihin tahansa ja t\u00e4m\u00e4n\ndatan prosessoimiseen on olemassa tehokkaita ty\u00f6kaluja. Pilvipalvelut ovat pitk\u00e4\u00e4n olleet\nsuosittu tapa varastoida ja prosessoida ker\u00e4tty\u00e4 dataa, mutta koska datan m\u00e4\u00e4r\u00e4 on niin valtava, ei ole kovin mielek\u00e4st\u00e4 l\u00e4hett\u00e4\u00e4 t\u00e4llaista suurtaa m\u00e4\u00e4r\u00e4\u00e4 dataa pitki\u00e4 matkoja. Jossakin\ntilanteissa saattaa olla tarkoituksen mukaisempaa ja jopa v\u00e4ltt\u00e4m\u00e4t\u00f6nt\u00e4, ett\u00e4 data prosessoidaan osittain tai kokonaan l\u00e4hell\u00e4 sen l\u00e4hdett\u00e4 ja ett\u00e4 kyet\u00e4\u00e4n nopeasti vastaamaan muuttuviin olosuhteisiin.\nOnkin varsin ilmiselv\u00e4\u00e4, ett\u00e4 pelk\u00e4st\u00e4\u00e4n pilvipalveluita k\u00e4ytt\u00e4m\u00e4ll\u00e4 ei t\u00e4llaisiin vaatimuksiin\nvoida p\u00e4\u00e4st\u00e4. Siksi t\u00e4h\u00e4n rinnalle on noussut uusi paradigma jota nimitet\u00e4\u00e4n reunalaskennaksi. Mikrokontrollerien kehitys muistin, laskentatehon ja koon pienentymisen puolesta on\nmahdollistanut sen, ett\u00e4 ker\u00e4tty\u00e4 dataa voidaan prosessoida jo hyvin aikaisessa vaiheessa l\u00e4hell\u00e4 datan l\u00e4hdett\u00e4. T\u00e4m\u00e4 avaa uusia sovelluskohteita, sek\u00e4 hy\u00f6tyj\u00e4 esimerkiksi tietoturvan\nja datan perusteella teht\u00e4vien toimenpiteiden suorittamisen suhteen. Kuitenkin t\u00e4ll\u00e4 saralla on viel\u00e4 paljon tutkimusta teht\u00e4v\u00e4n\u00e4. T\u00e4ss\u00e4 tutkielmassa tutkittiin reunalaskennan soveltamista liukkauden havainnoinnissa. Tutkielmassa rakennettiin yksinkertainen sovellus, joka\nkykenee sensoreilla ker\u00e4\u00e4m\u00e4\u00e4n dataa ymp\u00e4rist\u00f6st\u00e4, prosessoimaan dataa, sy\u00f6tt\u00e4m\u00e4\u00e4n prosessoidun datan teko\u00e4lymallille ja n\u00e4in tuottamaan tuloksia datan pohjalta. Sovellusta testattiin viikon ajan ja tulokset kirjattiin lokitiedostoon. Tuloksista selvi\u00e4\u00e4, ett\u00e4 vaikka itse tutkimus\nei onnistunutkaan t\u00e4ysin kuten oltiin alkuun suunniteltu, on reunalaskennalle silti n\u00e4ht\u00e4viss\u00e4\npotentiaalia valitun skenaarion tarkkailussa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "IoT has revolutionized the world we live in today and it brings enormous possibilities and ways we can interact with the world around us. The amount of data gathered\nfrom our environment has increased enormously because now a days sensors can be embedded almost everywhere. On the other hand the tools used to process this gathered data have\nbecome more and more effective, too. For a long time cloud computing has been the most\nwidely used method to process this data and cloud services are used to store data. However, the amount of data has become so massive that it is not very efficient to move such big\nloads of data for long distances. In some cases it might be more practical or even essential to\nprocess the data on the location where it is generated and in turn to take action in different\nsituations.\nGiven this statement, it is quite obvious that cloud computing alone can not meet these requirements. The pressure to meet these requirements has created a new computing paradigm called edge computing. The advancements in microcontroller techonologies, specifically size,\ncomputing capacity and increased memory, are the key features making edge computing\npossible. Edge computing opens up a whole new world of possibilities with applications and\nbenefits for example with information security and with the speed that a certain action can\nbe taken based on data from environment. In this research an application was built that uses\nedge computing. The goal was to examine, how could an application using edge computing\nbe used to monitor the formation of slippery conditions. The application gathers data from\nthe environment using sensors, processes the gathered data and feeds that processed data to\nan ai model which then makes an inference and that inference is stored. Even though the research itself did not go as was planned, it is safe to say that edge computing could still be\nused in the scenarion examined in this research.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-16T06:47:00Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-16T06:47:00Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "71", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "reuna\u00e4ly", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "IoT", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "teko\u00e4ly", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "koneoppiminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "langaton kommunikaatio", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "\u00e4lyk\u00e4s ymp\u00e4rist\u00f6", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Reunalaskennan hy\u00f6dynt\u00e4minen liukkaiden olosuhteiden havaitsemisessa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206163384", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "8000", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "business", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "reunalaskenta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "esineiden internet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Arduino", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Raspberry Pi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_81775
language fin
last_indexed 2025-02-18T10:54:04Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/c615b316-8acf-4d4c-b920-1863a40a6bf5\/download","text":"URN:NBN:fi:jyu-202206163384.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Leikari, Aaro Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa reunaäly IoT tekoäly koneoppiminen langaton kommunikaatio älykäs ympäristö Tietotekniikka Mathematical Information Technology 602 reunalaskenta esineiden internet data Arduino Raspberry Pi
title Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_full Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_fullStr Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_full_unstemmed Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_short Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_sort reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
title_txtP Reunalaskennan hyödyntäminen liukkaiden olosuhteiden havaitsemisessa
topic reunaäly IoT tekoäly koneoppiminen langaton kommunikaatio älykäs ympäristö Tietotekniikka Mathematical Information Technology 602 reunalaskenta esineiden internet data Arduino Raspberry Pi
topic_facet 602 Arduino IoT Mathematical Information Technology Raspberry Pi Tietotekniikka data esineiden internet koneoppiminen langaton kommunikaatio reunalaskenta reunaäly tekoäly älykäs ympäristö
url https://jyx.jyu.fi/handle/123456789/81775 http://www.urn.fi/URN:NBN:fi:jyu-202206163384
work_keys_str_mv AT leikariaaro reunalaskennanhyödyntäminenliukkaidenolosuhteidenhavaitsemisessa