fullrecord |
[{"key": "dc.contributor.advisor", "value": "Mero, Joel", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Hautakangas, Teemu", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-07T12:32:57Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-07T12:32:57Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81538", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Massadata (engl. Big Data) on noussut esiin merkitt\u00e4v\u00e4n\u00e4 teknologiana useilla eri toimialoilla, markkinointi mukaan lukien. Massadata-analytiikka viittaa massadatan k\u00e4sittelyss\u00e4 k\u00e4ytett\u00e4viin teknologioihin ja analyyttisiin menetelmiin. Massadata-analytiikkaa pidet\u00e4\u00e4n innovatiivisena ty\u00f6kaluna tietopohjaisessa p\u00e4\u00e4t\u00f6ksenteossa. Vaikka massadata-analytiikan k\u00e4ytt\u00f6 luo mahdollisuuden n\u00e4kemyksiin, jotka tukevat positiivisesti strategioita ja markkinointitoimia tietopohjaisessa markkinoinnissa, sen t\u00e4ytt\u00e4 potentiaalia ei ole viel\u00e4 saavutettu. Massadata-analytiikan p\u00e4\u00e4t\u00f6ksentekoon tarjoaman potentiaalin tunnistamisesta huolimatta, ymm\u00e4rrys massadata-analytiikan k\u00e4yt\u00f6st\u00e4 markkinoinnin strategisessa p\u00e4\u00e4t\u00f6ksenteossa on toistaiseksi vajavaista.\n\tT\u00e4m\u00e4n tutkimuksen tavoitteena oli tutkia, kuinka massadata-analytiikkaa hy\u00f6dynnet\u00e4\u00e4n markkinoinnin strategisessa p\u00e4\u00e4t\u00f6ksenteossa ja kuinka massadata-analytiikka tarjoaa yrityksille tietoa strategista p\u00e4\u00e4t\u00f6ksentekoa varten hy\u00f6dynt\u00e4en tiet\u00e4myksenhallinnan prosesseja ja dynaamisia kyvykkyyksi\u00e4. Tutkielmassa k\u00e4ytett\u00e4v\u00e4 tutkimusmuoto oli kartoittava ja kvalitatiivinen tutkimus. Tutkimuksen aineisto muodostui viidest\u00e4 puolistrukturoidusta haastattelusta, joissa haastateltiin asiantuntijoita markkinointiorganisaatioista.\n\tTulokset olivat p\u00e4\u00e4osin linjassa aiempien tutkimustulosten kanssa, mutta tutkimus syvensi aiempia tuloksia esittelem\u00e4ll\u00e4 alkuper\u00e4isen tietopohjaisen markkinoinnin mallin massadata-analytiikasta markkinoinnin strategisessa p\u00e4\u00e4t\u00f6ksenteossa, hy\u00f6dynt\u00e4en tiet\u00e4myksenhallinnan prosesseja, sek\u00e4 luoden dynaamisia kyvykkyyksi\u00e4. Massadata-analytiikassa k\u00e4ytett\u00e4v\u00e4n datan oikeellisuus ja validiteetti nousivat esiin merkitt\u00e4vin\u00e4 tekij\u00f6in\u00e4, ja massadata-analytiikan k\u00e4ytt\u00f6\u00e4 markkinoinnin strategisessa p\u00e4\u00e4t\u00f6ksenteossa ohjaa hyv\u00e4 ymm\u00e4rrys organisaation markkinoinnin toiminnoista. Tulokset yhdist\u00e4v\u00e4t massadata-analytiikan ja strategisen p\u00e4\u00e4t\u00f6ksenteon vaiheet korostaen massadata-analytiikan tarjoamia dynaamisia kyvykkyyksi\u00e4 reaktiivisuuden ja sopeutumiskyvyn kautta. Lis\u00e4ksi tutkimuksen tulokset antavat uusia n\u00e4kemyksi\u00e4 massadata-analytiikan hy\u00f6dynt\u00e4misest\u00e4 strategisessa p\u00e4\u00e4t\u00f6ksenteossa ja tietopohjaisessa markkinoinnissa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Big Data has emerged as an impactful technology across industries, including marketing. Big Data Analytics refers to the technologies and analytical methods used to process Big Data, and it is considered as an innovative tool for data-driven decision-making. The use of Big Data Analytics creates an opportunity for insights that will positively support strategies and marketing actions in data-driven marketing and is still yet to reach its full potential. Despite the recognized potential that Big Data Analytics offer for decision-making, it remains unclear how Big Data Analytics are used in the strategic marketing decision-making.\n\tThis study aims to offer knowledge how Big Data Analytics is utilized in the strategic marketing decision-making and how Big Data Analytics provide firms with knowledge for strategic marketing decision-making through knowledge management processes and dynamic capabilities. The study conducted in this thesis is a qualitative study that uses exploratory research design. The data was collected with five semi-structured interviews of experts in marketing organizations.\n\tThe findings of this thesis are in accordance with the existing literature, but also provides an original data-driven marketing model for the use of Big Data Analytics in strategic marketing decision-making through knowledge management processes and creation of dynamic capabilities. The veracity and validity of the data used in Big Data Analytics emerged as an important factor, and the use of Big Data Analytics in strategic decision-making must be guided by a good understanding of the organisation\u2019s marketing operations. The findings draw connections between Big Data Analytics and strategic marketing decision-making phases, emphasizing dynamic capabilities provided by Big Data Analytics in improved reactivity and adaptiveness. In addition, the findings provide new insights on the utilization of Big Data Analytics in strategic decision-making and on data-driven marketing.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-07T12:32:57Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-07T12:32:57Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "84", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "big data analytics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "data-driven marketing", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "strategic decision-making", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "dynamic capabilities", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "The Use of Big Data Analytics in the Strategic Marketing Decision-Making", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206073151", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4 University School of Business and Economics", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4n yliopiston kauppakorkeakoulu", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Taloustieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Business and Economics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Markkinointi", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Marketing", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "20423", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "markkinointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "p\u00e4\u00e4t\u00f6ksenteko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiet\u00e4myksenhallinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "marketing", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "decision making", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "knowledge management", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|