Transformers for breast cancer classification

Rintasyöpä on maailmanlaajuisesti naisten yleisin syöpä, sen varhainen havaitseminen voi merkittävästi vähentää siihen liittyvää kuolleisuutta. Histopatologista analyysiä tarvitaan kasvainten laadun määrittämiseksi solutasolla. Histopatologisten kuvien manuaalinen analyysi vie kuitenkin aikaa ja on...

Full description

Bibliographic Details
Main Author: Lindroos, Jari
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81505
_version_ 1826225753286508544
author Lindroos, Jari
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Lindroos, Jari Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Lindroos, Jari Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Lindroos, Jari
datasource_str_mv jyx
description Rintasyöpä on maailmanlaajuisesti naisten yleisin syöpä, sen varhainen havaitseminen voi merkittävästi vähentää siihen liittyvää kuolleisuutta. Histopatologista analyysiä tarvitaan kasvainten laadun määrittämiseksi solutasolla. Histopatologisten kuvien manuaalinen analyysi vie kuitenkin aikaa ja on altis virheille. Syväoppimiseen pohjautuvassa tutkimuksessa on esitetty menetelmiä rintasyövän tunnistamiseen, jotka voivat auttaa patologeja diagnosoimisessa. Konvoluutioneuroverkot ovat pitkään olleet käytetyin menetelmä rintasyövän luokitteluun syväoppimisessa, mutta ne ovat enimmäkseen rajoittuneet keskittymään kuvien paikallisiin ominaisuuksiin. Vision Transformer on osoittautunut suoriutumaan konvoluutioneuroverkkoja paremmin useissa kuvanluokittelutehtävissä, koska se pystyy keskittymään kuvien pitkän matkan riippuvuuksiin. Tämän tutkielman tavoitteena on arvioida Vision Transformer -pohjaisten mallien suorituskykyä vertaamalla niitä yleisesti käytettyyn konvoluutioneuroverkkoon ResNet-50, kokeilut suoritetaan PCam-aineistolla. Mallien koulutuksessa hyödynnämme sekä perinteistä siirto-oppimiseen perustuvaa lähestymistapaa että myös toimialuekohtaiseen esikoulutukseen perustuvaa lähestymistapaa. Osoitamme, että implementoiduilla Vision Transformer -malleilla saadaan parempia tuloksia kuin ResNet-50 -mallilla. Parhaalla mallilla B/16 saavutettiin paras AUC-tulos arvolla 0.97315. Toimialuekohtaisen esikoulutuksen käyttö parantaa suorituskykyä kaikissa malleissa paitsi Ti/16 malleissa. Breast cancer is the most common cancer worldwide in females apart from non-melanoma skin cancer. Detecting breast cancer as early as possible could significantly reduce its death rates. Histopathological analysis of the breast tissues is needed for determining the malignancy of the tumor on a cellular level. Manual analysis of histopathological images is time consuming and sensitive to human errors. Deep learning has introduced methods for recognizing breast cancer to assist pathologists in their diagnostic workflow. The convolutional neural networks have for long been the bandwagon deep learning model for breast cancer classification, but they are mostly limited at focusing on local variations in image patterns. The Vision Transformer, which originated from the dominant Transformer architecture in natural language processing has shown to outperform convolutional neural networks on several image classification benchmarks, due to its ability to focus on long range dependencies in images. In this thesis we aim to evaluate the performance of Vision Transformer based models by comparing them to the commonly used convolutional neural network ResNet-50 on the PCam-dataset. For training we utilize both the conventional transfer learning based approach and also an pre-training approach based on domain adaptation. We demonstrate the effectiveness of the implemented Vision Transformer models in the medical domain, by obtaining better results than the ResNet-50 on the PCam-dataset, with the best model B/16 achieving the best AUC score of 0.97315. The use of domain-based pre-training shows a performance gain for every model except the Ti/16-family models.
first_indexed 2022-06-06T20:00:40Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "P\u00f6l\u00f6nen, Ilkka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Lindroos, Jari", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-06T10:30:32Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-06T10:30:32Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81505", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Rintasy\u00f6p\u00e4 on maailmanlaajuisesti naisten yleisin sy\u00f6p\u00e4, sen varhainen havaitseminen voi merkitt\u00e4v\u00e4sti v\u00e4hent\u00e4\u00e4 siihen liittyv\u00e4\u00e4 kuolleisuutta. Histopatologista analyysi\u00e4 tarvitaan kasvainten laadun m\u00e4\u00e4ritt\u00e4miseksi solutasolla. Histopatologisten kuvien manuaalinen analyysi vie kuitenkin aikaa ja on altis virheille. Syv\u00e4oppimiseen pohjautuvassa tutkimuksessa on esitetty menetelmi\u00e4 rintasy\u00f6v\u00e4n tunnistamiseen, jotka voivat auttaa patologeja diagnosoimisessa. Konvoluutioneuroverkot ovat pitk\u00e4\u00e4n olleet k\u00e4ytetyin menetelm\u00e4 rintasy\u00f6v\u00e4n luokitteluun syv\u00e4oppimisessa, mutta ne ovat enimm\u00e4kseen rajoittuneet keskittym\u00e4\u00e4n kuvien paikallisiin ominaisuuksiin. Vision Transformer on osoittautunut suoriutumaan konvoluutioneuroverkkoja paremmin useissa kuvanluokitteluteht\u00e4viss\u00e4, koska se pystyy keskittym\u00e4\u00e4n kuvien pitk\u00e4n matkan riippuvuuksiin. T\u00e4m\u00e4n tutkielman tavoitteena on arvioida Vision Transformer -pohjaisten mallien suorituskyky\u00e4 vertaamalla niit\u00e4 yleisesti k\u00e4ytettyyn konvoluutioneuroverkkoon ResNet-50, kokeilut suoritetaan PCam-aineistolla. Mallien koulutuksessa hy\u00f6dynn\u00e4mme sek\u00e4 perinteist\u00e4 siirto-oppimiseen perustuvaa l\u00e4hestymistapaa ett\u00e4 my\u00f6s toimialuekohtaiseen esikoulutukseen perustuvaa l\u00e4hestymistapaa. Osoitamme, ett\u00e4 implementoiduilla Vision Transformer -malleilla saadaan parempia tuloksia kuin ResNet-50 -mallilla. Parhaalla mallilla B/16 saavutettiin paras AUC-tulos arvolla 0.97315. Toimialuekohtaisen esikoulutuksen k\u00e4ytt\u00f6 parantaa suorituskyky\u00e4 kaikissa malleissa paitsi Ti/16 malleissa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Breast cancer is the most common cancer worldwide in females apart from non-melanoma skin cancer. Detecting breast cancer as early as possible could significantly reduce its death rates. Histopathological analysis of the breast tissues is needed for determining the malignancy of the tumor on a cellular level. Manual analysis of histopathological images is time consuming and sensitive to human errors. Deep learning has introduced methods for recognizing breast cancer to assist pathologists in their diagnostic workflow. The convolutional neural networks have for long been the bandwagon deep learning model for breast cancer classification, but they are mostly limited at focusing on local variations in image patterns. The Vision Transformer, which originated from the dominant Transformer architecture in natural language processing has shown to outperform convolutional neural networks on several image classification benchmarks, due to its ability to focus on long range dependencies in images. In this thesis we aim to evaluate the performance of Vision Transformer based models by comparing them to the commonly used convolutional neural network ResNet-50 on the PCam-dataset. For training we utilize both the conventional transfer learning based approach and also an pre-training approach based on domain adaptation. We demonstrate the effectiveness of the implemented Vision Transformer models in the medical domain, by obtaining better results than the ResNet-50 on the PCam-dataset, with the best model B/16 achieving the best AUC score of 0.97315. The use of domain-based pre-training shows a performance gain for every model except the Ti/16-family models.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-06T10:30:32Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-06T10:30:32Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "54", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "image classification", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "vision transformer", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "transformer", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "convolutional neural network", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Transformers for breast cancer classification", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206063122", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "syv\u00e4oppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "rintasy\u00f6p\u00e4", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sy\u00f6p\u00e4taudit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "konen\u00e4k\u00f6", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "deep learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "breast cancer", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cancerous diseases", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "computer vision", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_81505
language eng
last_indexed 2025-02-18T10:54:33Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/7f638111-14eb-4d09-a106-c6457f8a5778\/download","text":"URN:NBN:fi:jyu-202206063122.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Lindroos, Jari Transformers for breast cancer classification image classification vision transformer transformer convolutional neural network Tietotekniikka Mathematical Information Technology 602 syväoppiminen rintasyöpä syöpätaudit neuroverkot konenäkö deep learning breast cancer cancerous diseases neural networks (information technology) computer vision
title Transformers for breast cancer classification
title_full Transformers for breast cancer classification
title_fullStr Transformers for breast cancer classification Transformers for breast cancer classification
title_full_unstemmed Transformers for breast cancer classification Transformers for breast cancer classification
title_short Transformers for breast cancer classification
title_sort transformers for breast cancer classification
title_txtP Transformers for breast cancer classification
topic image classification vision transformer transformer convolutional neural network Tietotekniikka Mathematical Information Technology 602 syväoppiminen rintasyöpä syöpätaudit neuroverkot konenäkö deep learning breast cancer cancerous diseases neural networks (information technology) computer vision
topic_facet 602 Mathematical Information Technology Tietotekniikka breast cancer cancerous diseases computer vision convolutional neural network deep learning image classification konenäkö neural networks (information technology) neuroverkot rintasyöpä syväoppiminen syöpätaudit transformer vision transformer
url https://jyx.jyu.fi/handle/123456789/81505 http://www.urn.fi/URN:NBN:fi:jyu-202206063122
work_keys_str_mv AT lindroosjari transformersforbreastcancerclassification