Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry

Tämän pro gradu -työn kirjallisessa osassa perehdyttiin vesinäytteiden kvantitatiiviseen röntgenfluoresenssianalytiikkaan (XRF) liittyviin teemoihin. XRF on nopea, stabiili ja tarkka analyysimenetelmä, joka soveltuu useiden alkuaineiden mittaamiseen laajalla pitoisuusalueella. XRF-tekniikoilla on us...

Full description

Bibliographic Details
Main Author: Heikkilä, Jenni
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Kemian laitos, Department of Chemistry, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81504
_version_ 1826225766396854272
author Heikkilä, Jenni
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_facet Heikkilä, Jenni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä Heikkilä, Jenni Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_sort Heikkilä, Jenni
datasource_str_mv jyx
description Tämän pro gradu -työn kirjallisessa osassa perehdyttiin vesinäytteiden kvantitatiiviseen röntgenfluoresenssianalytiikkaan (XRF) liittyviin teemoihin. XRF on nopea, stabiili ja tarkka analyysimenetelmä, joka soveltuu useiden alkuaineiden mittaamiseen laajalla pitoisuusalueella. XRF-tekniikoilla on useita sovelluskohteita tutkimuksessa ja teollisuudessa. Kirjallisuuskatsauksen perusteella XRF-tekniikkaa ei yleisesti sovelleta vesinäytteiden mittaamiseen, ja useat tutkijat ovat hyödyntäneet näytteiden konsentrointia suoran nestefaasimittauksen sijaan. XRF-analytiikassa näytematriisin kemialliset ja fysikaaliset ominaisuudet vaikuttavat voimakkaasti mitattavaan signaaliin, ja matriisivaikutusten korjaamiseen on kehitetty lukuisia menetelmiä. Taustasäteilyn voimakas sironta on tyypillistä vesipohjaisilla näytteillä. Työn kokeellisessa osassa kehitettiin mittausmenetelmä vesipohjaisten prosessinäytteiden ja jätevesien mittaamiseen aallonpituus-dispersiivisellä XRF-tekniikalla (WDXRF). Kalibrointi tehtiin vesipohjaisilla standardiliuoksilla kymmenelle alkuaineelle (Na, Mg, Si, P, S, Cl, K, Ca, Mn, Fe). Näytteet mitattiin nestefaasissa käyttäen nestenäytteille tarkoitettuja näytekuppeja. Kalibroinnit olivat lineaarisia, ja määritysrajat asettuivat alkuaineesta riippuen 3,4–24,6 ppm tasolle. Menetelmän toimivuutta testattiin mittaamalla standardiliuoksia sekä näytteitä, joissa alkuaineiden pitoisuuksia oli kasvatettu lisäämällä standardiliuosta näytteeseen. XRF-menetelmän tuloksia verrattiin referenssimenetelmien tuloksiin. Saantoprosentit olivat natriumille 70–90 %, ja muille alkuaineille yleisesti 100–120 %. XRF-menetelmän tulokset olivat yleisesti suurempia kuin referenssimenetelmien tulokset, lukuun ottamatta natriumia. Tulosten suhteellinen hajonta XRF menetelmällä oli 2–16 %. Hajonta oli suurempaa natriumilla ja kloorilla kuin muilla alkuaineilla. Esikäsittelytesteihin valittiin kaksi erilaista näytetyyppiä, joista toinen oli öljy vedessä -emulsio ja toisessa oli kirkas vesifaasi. Esikäsittelyinä testattiin erotusta erotussuppilossa, suodatusta ja sentrifugointia. XRF-menetelmällä mitatut tulokset olivat lähellä referenssimenetelmien tuloksia molemmilla näytetyypeillä. Esikäsittelyillä ei ollut vaikutusta näytteistä mitattuihin alkuainepitoisuuksiin, eikä näytteen lämpötila vaikuttanut mittaukseen. In the literature review of this Master’s thesis work, topics related to quantitative analysis of aqueous samples with x-ray fluorescence (XRF) techniques were covered. XRF techniques are fast, highly stable and accurate methods for analysing several elements in wide concentration ranges. The techniques have a variety of applications in industry and research. According to the literature, XRF techniques are less typically used for measuring aqueous samples, and many researchers have used preconcentration techniques to obtain sufficient detection limits. In XRF, the analyte signal is strongly affected by the physical and chemical properties of the sample matrix, and several matrix correction procedures have been developed. Strong background scattering is typical for aqueous matrices. In the experimental part of the work, a method for measuring aqueous process samples with wavelength dispersive XRF instrumentation (WDXRF) was developed. The method was calibrated with aqueous standard solutions, and it included 10 elements (Na, Mg, Si, P, S, Cl, K, Ca, Mn, Fe). The samples were measured directly as liquids using liquid sample cups. Calibrations were linear, and the limits of quantitation were between 3.4 – 24.6 ppm depending on the analyte. Method performance was tested with standard solutions and spiked samples, and the results were compared to the results from reference methods. Recoveries for sodium were 70 – 90% whereas for other elements the recoveries were 100 – 120%. Except for sodium, the results from XRF were generally higher than the results from reference methods. Relative standard deviation of results was 2 – 16%. Variance was greater for Na and Cl than for other elements. Sample pretreatment tests were performed for two typical sample types, one being an organic-in water emulsion and the other having a clear aqueous phase. Sample pretreatment by funnel separation, filtration and centrifugation was tested. For both sample types, the XRF results were close to the results from reference methods. The measured analyte concentrations were similar after each pretreatment procedure, and the results were not affected by the changes in the sample temperature.
first_indexed 2024-09-11T08:50:25Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Louhelainen, Jarmo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Tikkakoski, Satu", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Heikkil\u00e4, Jenni", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-06T10:21:07Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-06T10:21:07Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81504", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n pro gradu -ty\u00f6n kirjallisessa osassa perehdyttiin vesin\u00e4ytteiden kvantitatiiviseen r\u00f6ntgenfluoresenssianalytiikkaan (XRF) liittyviin teemoihin. XRF on nopea, stabiili ja tarkka analyysimenetelm\u00e4, joka soveltuu useiden alkuaineiden mittaamiseen laajalla pitoisuusalueella. XRF-tekniikoilla on useita sovelluskohteita tutkimuksessa ja teollisuudessa. Kirjallisuuskatsauksen perusteella XRF-tekniikkaa ei yleisesti sovelleta vesin\u00e4ytteiden mittaamiseen, ja useat tutkijat ovat hy\u00f6dynt\u00e4neet n\u00e4ytteiden konsentrointia suoran nestefaasimittauksen sijaan. XRF-analytiikassa n\u00e4ytematriisin kemialliset ja fysikaaliset ominaisuudet vaikuttavat voimakkaasti mitattavaan signaaliin, ja matriisivaikutusten korjaamiseen on kehitetty lukuisia menetelmi\u00e4. Taustas\u00e4teilyn voimakas sironta on tyypillist\u00e4 vesipohjaisilla n\u00e4ytteill\u00e4. Ty\u00f6n kokeellisessa osassa kehitettiin mittausmenetelm\u00e4 vesipohjaisten prosessin\u00e4ytteiden ja j\u00e4tevesien mittaamiseen aallonpituus-dispersiivisell\u00e4 XRF-tekniikalla (WDXRF). Kalibrointi tehtiin vesipohjaisilla standardiliuoksilla kymmenelle alkuaineelle (Na, Mg, Si, P, S, Cl, K, Ca, Mn, Fe). N\u00e4ytteet mitattiin nestefaasissa k\u00e4ytt\u00e4en nesten\u00e4ytteille tarkoitettuja n\u00e4ytekuppeja. Kalibroinnit olivat lineaarisia, ja m\u00e4\u00e4ritysrajat asettuivat alkuaineesta riippuen 3,4\u201324,6 ppm tasolle. Menetelm\u00e4n toimivuutta testattiin mittaamalla standardiliuoksia sek\u00e4 n\u00e4ytteit\u00e4, joissa alkuaineiden pitoisuuksia oli kasvatettu lis\u00e4\u00e4m\u00e4ll\u00e4 standardiliuosta n\u00e4ytteeseen. XRF-menetelm\u00e4n tuloksia verrattiin referenssimenetelmien tuloksiin. Saantoprosentit olivat natriumille 70\u201390 %, ja muille alkuaineille yleisesti 100\u2013120 %. XRF-menetelm\u00e4n tulokset olivat yleisesti suurempia kuin referenssimenetelmien tulokset, lukuun ottamatta natriumia. Tulosten suhteellinen hajonta XRF menetelm\u00e4ll\u00e4 oli 2\u201316 %. Hajonta oli suurempaa natriumilla ja kloorilla kuin muilla alkuaineilla. Esik\u00e4sittelytesteihin valittiin kaksi erilaista n\u00e4ytetyyppi\u00e4, joista toinen oli \u00f6ljy vedess\u00e4 -emulsio ja toisessa oli kirkas vesifaasi. Esik\u00e4sittelyin\u00e4 testattiin erotusta erotussuppilossa, suodatusta ja sentrifugointia. XRF-menetelm\u00e4ll\u00e4 mitatut tulokset olivat l\u00e4hell\u00e4 referenssimenetelmien tuloksia molemmilla n\u00e4ytetyypeill\u00e4. Esik\u00e4sittelyill\u00e4 ei ollut vaikutusta n\u00e4ytteist\u00e4 mitattuihin alkuainepitoisuuksiin, eik\u00e4 n\u00e4ytteen l\u00e4mp\u00f6tila vaikuttanut mittaukseen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In the literature review of this Master\u2019s thesis work, topics related to quantitative analysis of aqueous samples with x-ray fluorescence (XRF) techniques were covered. XRF techniques are fast, highly stable and accurate methods for analysing several elements in wide concentration ranges. The techniques have a variety of applications in industry and research. According to the literature, XRF techniques are less typically used for measuring aqueous samples, and many researchers have used preconcentration techniques to obtain sufficient detection limits. In XRF, the analyte signal is strongly affected by the physical and chemical properties of the sample matrix, and several matrix correction procedures have been developed. Strong background scattering is typical for aqueous matrices. In the experimental part of the work, a method for measuring aqueous process samples with wavelength dispersive XRF instrumentation (WDXRF) was developed. The method was calibrated with aqueous standard solutions, and it included 10 elements (Na, Mg, Si, P, S, Cl, K, Ca, Mn, Fe). The samples were measured directly as liquids using liquid sample cups. Calibrations were linear, and the limits of quantitation were between 3.4 \u2013 24.6 ppm depending on the analyte. Method performance was tested with standard solutions and spiked samples, and the results were compared to the results from reference methods. Recoveries for sodium were 70 \u2013 90% whereas for other elements the recoveries were 100 \u2013 120%. Except for sodium, the results from XRF were generally higher than the results from reference methods. Relative standard deviation of results was 2 \u2013 16%. Variance was greater for Na and Cl than for other elements. Sample pretreatment tests were performed for two typical sample types, one being an organic-in water emulsion and the other having a clear aqueous phase. Sample pretreatment by funnel separation, filtration and centrifugation was tested. For both sample types, the XRF results were close to the results from reference methods. The measured analyte concentrations were similar after each pretreatment procedure, and the results were not affected by the changes in the sample temperature.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-06T10:21:07Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-06T10:21:07Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "122", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "x-ray fluorescence", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "aqueous samples", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "elemental analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206063121", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Kemian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Chemistry", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Kemia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Chemistry", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "student", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4038", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spektrometria", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mittausmenetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kemia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kemiallinen analyysi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spectrometry", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "measuring methods", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "chemistry", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "chemical analysis", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_81504
language eng
last_indexed 2025-02-18T10:56:28Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/d55115ca-512b-47e7-93d5-fcbb6512a14e\/download","text":"URN:NBN:fi:jyu-202206063121.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Heikkilä, Jenni Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry x-ray fluorescence aqueous samples elemental analysis Kemia Chemistry 4038 spektrometria mittausmenetelmät kemia kemiallinen analyysi spectrometry measuring methods chemistry chemical analysis
title Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
title_full Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
title_fullStr Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
title_full_unstemmed Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
title_short Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
title_sort elemental analysis of aqueous process samples with wavelength dispersive x ray fluorescence spectrometry
title_txtP Elemental Analysis of Aqueous Process Samples with Wavelength Dispersive X-ray Fluorescence Spectrometry
topic x-ray fluorescence aqueous samples elemental analysis Kemia Chemistry 4038 spektrometria mittausmenetelmät kemia kemiallinen analyysi spectrometry measuring methods chemistry chemical analysis
topic_facet 4038 Chemistry Kemia aqueous samples chemical analysis chemistry elemental analysis kemia kemiallinen analyysi measuring methods mittausmenetelmät spectrometry spektrometria x-ray fluorescence
url https://jyx.jyu.fi/handle/123456789/81504 http://www.urn.fi/URN:NBN:fi:jyu-202206063121
work_keys_str_mv AT heikkiläjenni elementalanalysisofaqueousprocesssampleswithwavelengthdispersivexrayfluorescencesp